PDF 32000-1:2008

First Edition
2008-7-1

Document management — Portable document format — Part 1:
PDF 1.7

o Adobe Systems Incorporated 2008 — All rights reserved [

PDF 32000-1:2008

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or
viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer
performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing
policy.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-
creation parameters were optimized for printing.

Copyright Notice

This document has been derived directly from the copyright ISO 32000-1 standard document available for purchase from
the ISO web site at http://www.iso.org/isol/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502. It is
being made available from the web site of Adobe Systems Incorporated (http://www.adobe.com/devnet/pdf/
pdf_reference.html) under agreement with ISO for those that do not need the official version containing the 1SO logo and
copyright notices. This version of the ISO 32000-1 standard is copyright by Adobe Systems Incorporated through an
agreement with ISO who is the copyright owner of the official ISO 32000-1 document of which this is an authorized copy.\

The technical material is identical between this version and the ISO Standard; the page and sections numbers are also
preserved. Requests for permission to reproduce this document for any purpose should be arranged with 1SO.

o Adobe Systems Incorporated 2008 — All rights reserved

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html

PDF 32000-1:2008

Contents Page
FOrEWOId. . .o e Vi
INtrOdUCTION . . e Vii
S T 0] 01 o 1
2 CONfOIMaANCE . . .ot e 1
2.1 GENEIAl. . .o e e 1
2.2 Conforming readers 1
2.3 CoNfOrmMINg W eI . . o 1
2.4 Conforming ProdUCES i 2
3 NOrMaAatiVEe FEfBIENCES . . e e e e 2
4 Terms and definitions e 6
D N AL ON .. e e e e 10
6 Version Designations 10
S 7 1= ¥ 11
.1 GENEral. . .o e e 11
7.2 LeXical CoONVENtIONSot e e e e e 11
7.3 OB JECtS. . .o 13
T4 FI IS . o e e 22
7.5 File StrUCtUNe. . . oo e e e 38
7.6 ENCIYPLiON . .o 55
7.7 DOCUMENt SITUCTUNE . . . o e e e e e e e e e e e e e e e e e 70
7.8 Content Streams and RESOUICESot ittt e e e e e e e e e 81
7.9 Common Data StrUCIUIES. i e e e e e e e e 84
.00 FUNCHIONS. . .o e e e e e e e 92
7.11 File Specifications 99
7.12 EXteNnSIiONS DiCtiONaryt e 108
8 GraphiCS . ..o 110
8.1 GENEral. e e 110
8.2 Graphics ODbJeCtsS 110
8.3 Coordinate SYStemM S 114
8.4 Graphics State. 121
8.5 Path Construction and Painting e 131
8.6 ColoUr SPACES. 138
8.7 PalleINS . .. e 173
8.8 EXternal ObjeCts 201
8.0 IMaAGES . . oo 203
8.10 Form XOD eCtS . ..o 217
8.11 Optional CoNntent. 222
L0 T 1= G 237
0.1 GENEral. . .o e 237
9.2 Organization and Use of FONES e 237
9.3 Text State Parameters and Operators. i e 243
0.4 TeXt ODJECES ..o 248
9.5 Introduction to Font Data StruCtUres i e 253
0.6 SIMPle FONEIS . .o e 254
0.7 COoMPOSITE FONTS. . .. 267
0.8 FONt DESCHIPIOrS . . oo 281
9.9 Embedded FONt Programs i 288
9.10 Extraction of Text Content. e e 292
10 ReNAEIING . . oot e e 296

o Adobe Systems Incorporated 2008 — All rights reserved i

PDF 32000-1:2008

10.1 GENEraAl. . . e 296
10.2 CIE-Based Colour to Device ColoUur i e 297
10.3 Conversions among Device ColoUur SPaces.ttt 297
10.4 Transfer FUNCLIONS e e e 300
10.5 Halftones ... e e 301
10.6 Scan Conversion Details 316
11 TranNSPAIENCYottt et e e e e e e e e 320
11,1 GENeral. . . e 320
11.2 Overview Of TranSParEnCy oottt ettt et e e e e e 320
11.3 Basic Compositing Computations 322
114 TransSpParenCy GrOUPS. . ..ttt ettt e e e et e e e 332
115 SOft MasSKS . ..ot e 342
11.6 Specifying Transparency in PDF 344
11.7 Colour Space and Rendering ISSUBS.ottt e e 353
12 Interactive FeatUIeSo e 362
12,1 GENEraAl. . . e 362
12,2 Viewer PreferenCeso e 362
12.3 Document-Level Navigation. e e 365
12.4 Page-Level Navigation 374
12,5 ANNOtatiONSo 381
12,8 ACHIONS . .. e e 414
12.7 Interactive FOImMS e 430
12.8 Digital SignatUres 466
12.9 Measurement Properties 479
12.10 DocumeNnt REqUITEMENTSottt e e e e e e e 484
13 Multimedia Features e e 486
13,1 GENEraAl. . . e 486
13.2 Multimediao o 486
13,3 SOUNAS . . e e 506
1304 MOVIES . e e 507
13.5 Alternate Presentations e 509
13,6 3D ANIWOIK . . .t e e 511
14 Document INterChange 547
141 GeNEraAl. . . e 547
14.2 ProCedUre SetS e 547
14.3 Metadata.ottt 548
14.4 File ldentifierso e 551
145 Page-Piece DiCtioNariesot 551
14.6 Marked CoNnteNnt. e 552
14.7 Logical StrUCTUTE. . . oo e 556
14.8 Tagged PDF 573
14.9 Accessibility SUPPOIto 610
L4, 00 Web Capture616
1411 Prepress SUPPOIT . . e e e e 627
Annex A

(informative)

OPErator SUMMAIY. . . .ottt ettt e e e e e e e e e e e e e 643
Annex B

(normative)

Operators in TYPe 4 FUNCHIONS . . . oot e e e e 647
Annex C

iv o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

(normative)

Implementation Limits. 649
Annex D

(normative)

Character Sets and ENCOAINGS. oot 651
Annex E

(normative)

PDF Name RegiStrY . .. e 673
Annex F

(normative)

Linearized P 675
Annex G

(informative)

Linearized PDF ACCESS Strategies . . . o ottt e e e 695
Annex H

(informative)

EXample PDF Files. . .o 699
Annex |

(normative)

PDF Versions and Compatibility 727
Annex J

(informative)

FDF Rename Flag Implementation Example. 729
Annex K

(informative)

PostScript Compatibility — Transparent Imaging Model. i i 731
Annex L

(informative)

ColoUr Plates . . oo 733
BibliOgraphy . . .o 745

o Adobe Systems Incorporated 2008 — All rights reserved v

PDF 32000-1:2008

Foreword

On January 29, 2007, Adobe Systems Incorporated announced it's intention to release the full Portable
Document Format (PDF) 1.7 specification to the American National Standard Institute (ANSI) and the
Enterprise Content Management Association (AlIM), for the purpose of publication by the International
Organization for Standardization (ISO).

PDF has become a de facto global standard for more secure and dependable information exchange since
Adobe published the complete PDF specification in 1993. Both government and private industry have come to
rely on PDF for the volumes of electronic records that need to be more securely and reliably shared, managed,
and in some cases preserved for generations. Since 1995 Adobe has participated in various working groups
that develop technical specifications for publication by ISO and worked within the I1ISO process to deliver
specialized subsets of PDF as standards for specific industries and functions. Today, PDF for Archive (PDF/A)
and PDF for Exchange (PDF/X) are 1SO standards, and PDF for Engineering (PDF/E) and PDF for Universal
Access (PDF/UA) are proposed standards. Additionally, PDF for Healthcare (PDF/H) is an AlIM proposed Best
Practice Guide. AlIM serves as the administrator for PDF/A, PDF/E, PDF/UA and PDF/H.

In the spring of 2008 the ISO 32000 document was prepared by Adobe Systems Incorporated (based upon
PDF Reference, sixth edition, Adobe Portable Document Format version 1.7, November 2006) and was
reviewed, edited and adopted, under a special “fast-track procedure”, by Technical Committee ISO/TC 171,
Document management application, Subcommittee SC 2, Application issues, in parallel with its approval by the
ISO member bodies.

In January 2008, this ISO technical committee approved the final revised documentation for PDF 1.7 as the
international standard ISO 32000-1. In July 2008 the ISO document was placed for sale on the 1ISO web site
(http://www.iso.org).

This document you are now reading is a copy of the ISO 32000-1 standard. By agreement with ISO, Adobe
Systems is allowed to offer this version of the ISO standard as a free PDF file on it's web site. It is not an official
ISO document but the technical content is identical including the section numbering and page numbering.

vi o Adobe Systems Incorporated 2008 — All rights reserved

http://www.iso.org
http://www.iso.org

PDF 32000-1:2008

Introduction

ISO 32000 specifies a digital form for representing documents called the Portable Document Format or usually
referred to as PDF. PDF was developed and specified by Adobe Systems Incorporated beginning in 1993 and
continuing until 2007 when this ISO standard was prepared. The Adobe Systems version PDF 1.7 is the basis
for this ISO 32000 edition. The specifications for PDF are backward inclusive, meaning that PDF 1.7 includes
all of the functionality previously documented in the Adobe PDF Specifications for versions 1.0 through 1.6. It
should be noted that where Adobe removed certain features of PDF from their standard, they too are not
contained herein.

The goal of PDF is to enable users to exchange and view electronic documents easily and reliably,
independent of the environment in which they were created or the environment in which they are viewed or
printed. At the core of PDF is an advanced imaging model derived from the PostScript® page description
language. This PDF Imaging Model enables the description of text and graphics in a device-independent and
resolution-independent manner. To improve performance for interactive viewing, PDF defines a more
structured format than that used by most PostScript language programs. Unlike Postscript, which is a
programming language, PDF is based on a structured binary file format that is optimized for high performance
in interactive viewing. PDF also includes objects, such as annotations and hypertext links, that are not part of
the page content itself but are useful for interactive viewing and document interchange.

PDF files may be created natively in PDF form, converted from other electronic formats or digitized from paper,
microform, or other hard copy format. Businesses, governments, libraries, archives and other institutions and
individuals around the world use PDF to represent considerable bodies of important information.

Over the past fourteen years, aided by the explosive growth of the Internet, PDF has become widely used for
the electronic exchange of documents. There are several specific applications of PDF that have evolved where
limiting the use of some features of PDF and requiring the use of others, enhances the usefulness of PDF. ISO
32000 is an ISO standard for the full function PDF; the following standards are for more specialized uses. PDF/
X (ISO 15930) is now the industry standard for the intermediate representation of printed material in electronic
prepress systems for conventional printing applications. PDF/A (ISO 19005) is now the industry standard for
the archiving of digital documents. PDF/E (ISO 24517) provides a mechanism for representing engineering
documents and exchange of engineering data. As major corporations, government agencies, and educational
institutions streamline their operations by replacing paper-based workflow with electronic exchange of
information, the impact and opportunity for the application of PDF will continue to grow at a rapid pace.

PDF, together with software for creating, viewing, printing and processing PDF files in a variety of ways, fulfils a
set of requirements for electronic documents including:

» preservation of document fidelity independent of the device, platform, and software,

 merging of content from diverse sources—Web sites, word processing and spreadsheet programs,
scanned documents, photos, and graphics—into one self-contained document while maintaining the
integrity of all original source documents,

« collaborative editing of documents from multiple locations or platforms,

« digital signatures to certify authenticity,

e security and permissions to allow the creator to retain control of the document and associated rights,

« accessibility of content to those with disabilities,

e extraction and reuse of content for use with other file formats and applications, and

« electronic forms to gather data and integrate it with business systems.

o Adobe Systems Incorporated 2008 — All rights reserved vii

PDF 32000-1:2008

The International Organization for Standardization draws attention to the fact that it is claimed that compliance
with this document may involve the use of patents concerning the creation, modification, display and
processing of PDF files which are owned by the following parties:

e Adobe Systems Incorporated, 345 Park Avenue, San Jose, California,95110-2704, USA
ISO takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights has assured the ISO that they are willing to negotiate licenses under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statements of the holders of these patent rights are registered with ISO. Information may be obtained from
those parties listed above.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. ISO shall not be held responsible for identifying any or all such patent
rights.

A repository of referenced documents has been established by AlIM (http://www.aiim.org/pdfrefdocs). Not all
referenced documents can be found there because of copyright restrictions.

viii o Adobe Systems Incorporated 2008 — All rights reserved

http://www.aiim.org/pdfrefdocs

PDF 32000-1:2008

Document management — Portable document format —

Part 1:
PDF 1.7

IMPORTANT — The electronic file of this document contains colours which are considered to be useful

for the correct understanding of the document. Users should therefore consider printing this document
using a colour printer.

1 Scope

This International Standard specifies a digital form for representing electronic documents to enable users to
exchange and view electronic documents independent of the environment in which they were created or the
environment in which they are viewed or printed. It is intended for the developer of software that creates PDF
files (conforming writers), software that reads existing PDF files and interprets their contents for display and
interaction (conforming readers) and PDF products that read and/or write PDF files for a variety of other
purposes (conforming products).

This standard does not specify the following:

« specific processes for converting paper or electronic documents to the PDF format;

» specific technical design, user interface or implementation or operational details of rendering;

» specific physical methods of storing these documents such as media and storage conditions;

* methods for validating the conformance of PDF files or readers;

* required computer hardware and/or operating system.

2 Conformance

2.1 General

Conforming PDF files shall adhere to all requirements of the ISO 32000-1 specification and a conforming file is
not obligated to use any feature other than those explicitly required by ISO 32000-1.

NOTE 1 The proper mechanism by which a file can presumptively identify itself as being a PDF file of a given version
level is described in 7.5.2, "File Header".

2.2 Conforming readers

A conforming reader shall comply with all requirements regarding reader functional behaviour specified in
ISO 32000-1. The requirements of ISO 32000-1 with respect to reader behaviour are stated in terms of general
functional requirements applicable to all conforming readers. 1ISO 32000-1 does not prescribe any specific
technical design, user interface or implementation details of conforming readers. The rendering of conforming
files shall be performed as defined by ISO 32000-1.

2.3 Conforming writers

A conforming writer shall comply with all requirements regarding the creation of PDF files as specified in
ISO 32000-1. The requirements of ISO 32000-1 with respect to writer behaviour are stated in terms of general
functional requirements applicable to all conforming writers and focus on the creation of conforming files.
ISO 32000-1 does not prescribe any specific technical design, user interface or implementation details of
conforming writers.

o Adobe Systems Incorporated 2008 — All rights reserved 1

PDF 32000-1:2008

2.4 Conforming products

A conforming product shall comply with all requirements regarding the creation of PDF files as specified in
ISO 32000-1 as well as comply with all requirements regarding reader functional behavior specified in
ISO 32000-1.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO 639-1:2002, Codes for the representation of names of languages -- Part 1: Alpha-2 code.

ISO 639-2:1998, Codes for the representation of names of languages -- Part 2: Alpha-3 code.

ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions -- Part 1: Country
codes.

ISO 3166-2:1998, Codes for the representation of names of countries and their subdivisions -- Part 2: Country
subdivision code.

ISO/IEC 8824-1:2002, Abstract Syntax Notation One (ASN.1): Specification of basic notation.

ISO/IEC 10918-1:1994, Digital Compression and Coding of Continuous-Tone Still Images (informally known as
the JPEG standard, for the Joint Photographic Experts Group, the ISO group that developed the standard).

ISO/IEC 15444-2:2004, Information Technology—JPEG 2000 Image Coding System: Extensions.

ISO/IEC 11544:1993/Cor 2:2001, Information technology—Coded representation of picture and audio
information—Progressive bi-level image compression (JBIG2).

IEC/3WD 61966-2.1:1999, Colour Measurement and Management in Multimedia Systems and Equipment, Part
2.1: Default RGB Colour Space—sRGB.

ISO 15076-1:2005, Image technology colour management - Architecture, profile format and data structure -
Part 1:Based on ICC.1:2004-10.

ISO 10646:2003, Information technology -- Universal Multiple-Octet Coded Character Set (UCS).
ISO/IEC 9541-1:1991, Information technology -- Font information interchange -- Part 1: Architecture.

ANSI X3.4-1986, Information Systems - Coded Sets 7-Bit American National Standard Code for Information
Interchange (7-bit ASCII).

NOTE 1 The following documents can be found at AlIM at http://www.aiim.org/pdfrefdocs as well as at the Adobe
Systems Incorporated Web Site http://www.adobe.com/go/pdf_ref_bibliography.

PDF Reference, Version 1.7, — 5th ed., (ISBN 0-321-30474-8), Adobe Systems Incorporated.
JavaScript for Acrobat AP| Reference, Version 8.0, (April 2007), Adobe Systems Incorporated.
Acrobat 3D JavaScript Reference, (April 2007), Adobe Systems Incorporated.

Adobe Glyph List, Version 2.0, (September 2002), Adobe Systems Incorporated.

OPI: Open Prepress Interface Specification 1.3, (September 1993), Adobe Systems Incorporated.

2 o Adobe Systems Incorporated 2008 — All rights reserved

http://adobe.com/go/pdf_ref_bibliography
http://adobe.com/go/pdf_ref_bibliography
http://www.adobe.com/go/pdf_ref_bibliography
http://www.adobe.com/go/pdf_ref_bibliography

PDF 32000-1:2008

PDF Signature Build Dictionary Specification v.1.4, (March 2008), Adobe Systems Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.5, (June 2007), Adobe Systems
Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.4, (September 2006), Adobe
Systems Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.2, (June 2005), Adobe Systems
Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.0, (October 2003), Adobe Systems
Incorporated.

NOTE 2 Beginning with XFA 2.2, the XFA specification includes the Template Specification, the Config Specification,
the XDP Specification, and all other XML specifications unique to the XML Forms Architecture (XFA).

Adobe XML Architecture, XML Data Package (XDP) Specification, version 2.0, (October 2003), Adobe
Systems Incorporated.

Adobe XML Architecture, Template Specification, version 2.0, (October 2003), Adobe Systems Incorporated.
XML Forms Data Format Specification, version 2.0, (September 2007), Adobe Systems Incorporated.

XMP: Extensible Metadata Platform, (September 2005), Adobe Systems Incorporated.

TIFF Revision 6.0, Final, (June 1992), Adobe Systems Incorporated.

NOTE 3 The following Adobe Technical Notes can be found at the AlIM website at http://www.aiim.org/pdfnotes as well
as at the Adobe Systems Incorporated Web Site (http://www.adobe.com) using the general search facility,
entering the Technical Note number.

Technical Note #5004, Adobe Font Metrics File Format Specification, Version 4.1, (October 1998), Adobe
Systems Incorporated.

NOTE 4 Adobe font metrics (AFM) files are available through the Type section of the ASN Web site.

Technical Note #5014, Adobe CMap and CID Font Files Specification, Version 1.0, (June 1993), Adobe
Systems Incorporated.

Technical Note #5015, Type 1 Font Format Supplement, (May 1994), Adobe Systems Incorporated.

Technical Note #5078, Adobe-Japanl-4 Character Collection for CID-Keyed Fonts, (June 2004), Adobe
Systems Incorporated.

Technical Note #5079, Adobe-GB1-4 Character Collection for CID-Keyed Fonts, (November 2000), Adobe
Systems Incorporated.

Technical Note #5080, Adobe-CNS1-4 Character Collection for CID-Keyed Fonts, (May 2003), Adobe Systems
Incorporated.

Technical Note #5087, Multiple Master Font Programs for the Macintosh, (February 1992), Adobe Systems
Incorporated.

Technical Note #5088, Font Naming Issues, (April 1993), Adobe Systems Incorporated.

Technical Note #5092, CID-Keyed Font Technology Overview, (September 1994), Adobe Systems
Incorporated.

o Adobe Systems Incorporated 2008 — All rights reserved 3

http://www.aiim.org/pdfnotes
http://www.adobe.com

PDF 32000-1:2008

Technical Note #5093, Adobe-Koreal-2 Character Collection for CID-Keyed Fonts, (May 2003), Adobe
Systems Incorporated.

Technical Note #5094, Adobe CJKV Character Collections and CMaps for CID-Keyed Fonts, (June 2004),
Adobe Systems Incorporated.

Technical Note #5097, Adobe-Japan2-0 Character Collection for CID-Keyed Fonts, (May 2003), Adobe
Systems Incorporated.

Technical Note #5116, Supporting the DCT Filters in PostScript Level 2, (November 1992), Adobe Systems
Incorporated.

Technical Note #5176, The Compact Font Format Specification, version 1.0, (December 2003), Adobe
Systems Incorporated.

Technical Note #5177, The Type 2 Charstring Format, (December 2003), Adobe Systems Incorporated.
Technical Note #5411, ToUnicode Mapping File Tutorial, (May 2003), Adobe Systems Incorporated.
Technical Note #5620, Portable Job Ticket Format, Version 1.1, (April 1999), Adobe Systems Incorporated.

Technical Note #5660, Open Prepress Interface (OPI) Specification, Version 2.0, (January 2000), Adobe
Systems Incorporated.

NOTE 5 The following documents are available as Federal Information Processing Standards Publications.

FIPS PUB 186-2, Digital Signature Standard, describes DSA signatures, (January 2000), Federal Information
Processing Standards.

FIPS PUB 197, Advanced Encryption Standard (AES), (November 2001), Federal Information Processing
Standards.

NOTE 6 The following documents are available as Internet Engineering Task Force RFCs.

RFC 1321, The MD5 Message-Digest Algorithm, (April 1992), Internet Engineering Task Force (IETF).
RFC 1738, Uniform Resource Locators, (December 1994), Internet Engineering Task Force (IETF).
RFC 1808, Relative Uniform Resource Locators, (June 1995), Internet Engineering Task Force (IETF).

RFC 1950, ZLIB Compressed Data Format Specification, Version 3.3, (May 1996), Internet Engineering Task
Force (IETF).

RFC 1951, DEFLATE Compressed Data Format Specification, Version 1.3, (May 1996), Internet Engineering
Task Force (IETF).

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies,
(November 1996), Internet Engineering Task Force (IETF).

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, (November 1996), Internet
Engineering Task Force (IETF).

RFC 2083, PNG (Portable Network Graphics) Specification, Version 1.0, (March 1997), Internet Engineering
Task Force (IETF).

RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5, (March 1998), Internet Engineering Task
Force (IETF).

4 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

RFC 2396, Uniform Resource ldentifiers (URI): Generic Syntax, (August 1998), Internet Engineering Task
Force (IETF).

RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol—OCSP, (June 1999),
Internet Engineering Task Force (IETF).

RFC 2616, Hypertext Transfer Protocol—HTTP/1.1, (June 1999), Internet Engineering Task Force (IETF).

RFC 2898, PKCS #5: Password-Based Cryptography Specification Version 2.0, (September 2000), Internet
Engineering Task Force (IETF).

RFC 3066, Tags for the Identification of Languages, (January 2001), Internet Engineering Task Force (IETF).

RFC 3161, Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP), (August 2001), Internet
Engineering Task Force (IETF).

RFC 3174, US Secure Hash Algorithm 1 (SHAL), (September 2001), Internet Engineering Task Force (IETF).

RFC 3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List (CRL) Profile,
(April 2002), Internet Engineering Task Force (IETF).

NOTE 7 The following documents are available from other sources.

Adobe Type 1 Font Format., Version 1.1, (February 1993), Addison-Wesley, ISBN 0-201-57044-0.
OpenType Font Specification 1.4, December 2004, Microsoft.

TrueType Reference Manual, (December 2002), Apple Computer, Inc.

Standard ECMA-363, Universal 3D File Format, 1st Edition (U3D), (December 2004), Ecma International.
PANOSE Classification Metrics Guide, (February 1997), Hewlett-Packard Corporation.

ICC Characterization Data Registry, International Color Consortium (ICC).

Recommendations T.4 and T.6, Group 3 and Group 4 facsimile encoding, International Telecommunication
Union (ITU).

TrueType 1.0 Font Files Technical Specification, Microsoft Corporation.

Client-Side JavaScript Reference, (May 1999), Mozilla Foundation.

The Unicode Standard, Version 4.0, Addison-Wesley, Boston, MA, 2003, Unicode Consortium.

Unicode Standard Annex #9, The Bidirectional Algorithm, Version 4.0.0, (April 2003), Unicode Consortium.
Unicode Standard Annex #14, Line Breaking Properties, Version 4.0.0, (April 2003), Unicode Consortium.
Unicode Standard Annex #29, Text Boundaries, Version 4.0.0, (March 2005), Unicode Consortium.

Extensible Markup Language (XML) 1.1, World Wide Web Consortium (W3C).

o Adobe Systems Incorporated 2008 — All rights reserved 5

PDF 32000-1:2008

4 Terms and definitions

For the purposes of this document, these terms and definitions apply.

4.1

... (ellipsis)

An ellipsis is used within PDF examples to indicate omitted detail. Pairs of ellipses are also used to bracket
comments, in italic, about such omitted detail.

4.2
8-bit value
(see byte)

4.3
array object
a one-dimensional collection of objects arranged sequentially and implicitly numbered starting at 0

4.4

ASCII

the American Standard Code for Information Interchange, a widely used convention for encoding a specific set
of 128 characters as binary numbers defined in ANSI X3.4-1986

4.5
binary data
an ordered sequence of bytes

4.6
boolean objects
either the keyword true or the keyword false

4.7

byte

a group of 8 binary digits which collectively can be configured to represent one of 256 different values and
various realizations of the 8 binary digits are widely used in today's electronic equipment

4.8

catalog

the primary dictionary object containing references directly or indirectly to all other objects in the document with
the exception that there may be objects in the trailer that are not referred to by the catalog

4.9
character
numeric code representing an abstract symbol according to some defined character encoding rule

NOTE 1 There are three manifestations of characters in PDF, depending on context:

» A PDF file is represented as a sequence of 8-bit bytes, some of which are interpreted as char-
acter codes in the ASCII character set and some of which are treated as arbitrary binary data
depending upon the context.

» The contents (data) of a string or stream object in some contexts are interpreted as character
codes in the PDFDocEncoding or UTF-16 character set.

» The contents of a string within a PDF content stream in some situations are interpreted as char-
acter codes that select glyphs to be drawn on the page according to a character encoding that
is associated with the text font.

4.10

character set
a defined set of symbols each assigned a unique character value

6 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

4.11

conforming reader

software application that is able to read and process PDF files that have been made in conformance with this
specification and that itself conforms to requirements of conforming readers specified here [ISO 32000-1]

412
conforming product
software application that is both a conforming reader and a conforming writer

4.13
conforming writer
software application that is able to write PDF files that conform to this specification [ISO 32000-1]

4.14

content stream

stream object whose data consists of a sequence of instructions describing the graphical elements to be
painted on a page

4.15
cross reference table
data structure that contains the byte offset start for each of the indirect objects within the file

4.16

developer

Any entity, including individuals, companies, non-profits, standards bodies, open source groups, etc., who are
developing standards or software to use and extend ISO 32000-1.

4.17

dictionary object

an associative table containing pairs of objects, the first object being a name object serving as the key and the
second object serving as the value and may be any kind of object including another dictionary

4.18
direct object
any object that has not been made into an indirect object

4.19

electronic document

electronic representation of a page-oriented aggregation of text, image and graphic data, and metadata useful
to identify, understand and render that data, that can be reproduced on paper or displayed without significant
loss of its information content

4.20

end-of-line marker (EOL marker)

one or two character sequence marking the end of a line of text, consisting of a CARRIAGE RETURN
character (ODh) or a LINE FEED character (OAh) or a CARRIAGE RETURN followed immediately by a LINE
FEED

4.21

FDF file

File conforming to the Forms Data Format containing form data or annotations that may be imported into a PDF
file (see 12.7.7, “Forms Data Format”)

4.22

filter

an optional part of the specification of a stream object, indicating how the data in the stream should be decoded
before it is used

o Adobe Systems Incorporated 2008 — All rights reserved 7

PDF 32000-1:2008

4.23
font
identified collection of graphics that may be glyphs or other graphic elements [ISO 15930-4]

4.24

function

a special type of object that represents parameterized classes, including mathematical formulas and sampled
representations with arbitrary resolution

4.25

glyph
recognizable abstract graphic symbol that is independent of any specific design [ISO/IEC 9541-1]

4.26

graphic state

the top of a push down stack of the graphics control parameters that define the current global framework within
which the graphics operators execute

4.27
ICC profile
colour profile conforming to the ICC specification [ISO 15076-1:2005]

4.28

indirect object

an object that is labeled with a positive integer object number followed by a non-negative integer generation
number followed by obj and having endobj after it

4.29

integer object

mathematical integers with an implementation specified interval centered at O and written as one or more
decimal digits optionally preceded by a sign

4.30

name object

an atomic symbol uniquely defined by a sequence of characters introduced by a SOLIDUS (/), (2Fh) but the
SOLIDUS is not considered to be part of the name

4.31
name tree
similar to a dictionary that associates keys and values but the keys in a name tree are strings and are ordered

4.32

null object

a single object of type null, denoted by the keyword null, and having a type and value that are unequal to those
of any other object

4.33

number tree

similar to a dictionary that associates keys and values but the keys in a number tree are integers and are
ordered

4.34
numeric object
either an integer object or a real object

4.35

object

a basic data structure from which PDF files are constructed and includes these types: array, Boolean,
dictionary, integer, name, null, real, stream and string

8 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

4.36

object reference

an object value used to allow one object to refer to another; that has the form “<n> <m> R” where <n> is an
indirect object number, <m> is its version number and R is the uppercase letter R

4.37
object stream
a stream that contains a sequence of PDF objects

4.38
PDF
Portable Document Format file format defined by this specification [ISO 32000-1]

4.39

real object

approximate mathematical real numbers, but with limited range and precision and written as one or more
decimal digits with an optional sign and a leading, trailing, or embedded PERIOD (2Eh) (decimal point)

4.40

rectangle

a specific array object used to describe locations on a page and bounding boxes for a variety of objects and
written as an array of four numbers giving the coordinates of a pair of diagonally opposite corners, typically in
the form [I, Ily ur, ury] specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates of

the rectangle, in that order

4.41

resource dictionary

associates resource names, used in content streams, with the resource objects themselves and organized into
various categories (e.g., Font, ColorSpace, Pattern)

4.42
space character
text string character used to represent orthographic white space in text strings

NOTE2 space characters include HORIZONTAL TAB (U+0009), LINE FEED (U+000A), VERTICAL TAB (U+000B),
FORM FEED (U+000C), CARRIAGE RETURN (U+000D), SPACE (U+0020), NOBREAK SPACE (U+00A0),
EN SPACE (U+2002), EM SPACE (U+2003), FIGURE SPACE (U+2007), PUNCTUATION SPACE (U+2008),
THIN SPACE (U+2009), HAIR SPACE (U+200A), ZERO WIDTH SPACE (U+200B), and IDEOGRAPHIC
SPACE (U+3000)

4.43
stream object
consists of a dictionary followed by zero or more bytes bracketed between the keywords stream and endstream

4.44

string object

consists of a series of bytes (unsigned integer values in the range 0 to 255) and the bytes are not integer
objects, but are stored in a more compact form

4.45

web capture

refers to the process of creating PDF content by importing and possibly converting internet-based or locally-
resident files. The files being imported may be any arbitrary format, such as HTML, GIF, JPEG, text, and PDF

4.46

white-space character

characters that separate PDF syntactic constructs such as names and numbers from each other; white space
characters are HORIZONTAL TAB (09h), LINE FEED (0Ah), FORM FEED (0Ch), CARRIAGE RETURN (0Dh),
SPACE (20h); (see Table 1 in 7.2.2, “Character Set")

o Adobe Systems Incorporated 2008 — All rights reserved 9

PDF 32000-1:2008

4.47

XFDF file

file conforming to the XML Forms Data Format 2.0 specification, which is an XML transliteration of Forms Data
Format (FDF)

4.48
XMP packet
structured wrapper for serialized XML metadata that can be embedded in a wide variety of file formats

5 Notation

PDF operators, PDF keywords, the names of keys in PDF dictionaries, and other predefined names are written
in bold sans serif font; words that denote operands of PDF operators or values of dictionary keys are written in
italic sans serif font.

Token characters used to delimit objects and describe the structure of PDF files, as defined in 7.2, "Lexical
Conventions", may be identified by their ANSI X3.4-1986 (ASCII 7-bit USA codes) character name written in
upper case in bold sans serif font followed by a parenthetic two digit hexadecimal character value with the suffix
“h".

Characters in text streams, as defined by 7.9.2, "String Object Types", may be identified by their ANSI X3.4-
1986 (ASCII 7-bit USA codes) character name written in uppercase in sans serif font followed by a parenthetic
four digit hexadecimal character code value with the prefix “U+” as shown in EXAMPLE 1 in this clause.

EXAMPLE 1 EN SPACE (U+2002).

6 Version Designations

For the convenience of the reader, the PDF versions in which various features were introduced are provided
informatively within this document. The first version of PDF was designated PDF 1.0 and was specified by
Adobe Systems Incorporated in the PDF Reference 1.0 document published by Adobe and Addison Wesley.
Since then, PDF has gone through seven revisions designated as: PDF 1.1, PDF 1.2, PDF 1.3, PDF 1.4, PDF
1.5, PDF 1.6 and PDF 1.7. All non-deprecated features defined in a previous PDF version were also included in
the subsequent PDF version. Since 1SO 32000-1 is a PDF version matching PDF 1.7, it is also suitable for
interpretation of files made to conform with any of the PDF specifications 1.0 through 1.7. Throughout this
specification in order to indicate at which point in the sequence of versions a feature was introduced, a notation
with a PDF version number in parenthesis (e.g., (PDF 1.3)) is used. Thus if a feature is labelled with (PDF 1.3)
it means that PDF 1.0, PDF 1.1 and PDF 1.2 were not specified to support this feature whereas all versions of
PDF 1.3 and greater were defined to support it.

10 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

7 Syntax

7.1 General

This clause covers everything about the syntax of PDF at the object, file, and document level. It sets the stage
for subsequent clauses, which describe how the contents of a PDF file are interpreted as page descriptions,
interactive navigational aids, and application-level logical structure.

PDF syntax is best understood by considering it as four parts, as shown in Figure 1.

* Objects. A PDF document is a data structure composed from a small set of basic types of data objects.
Sub-clause 7.2, "Lexical Conventions,” describes the character set used to write objects and other
syntactic elements. Sub-clause 7.3, "Objects," describes the syntax and essential properties of the objects.
Sub-clause 7.3.8, "Stream Objects," provides complete details of the most complex data type, the stream
object.

e File structure. The PDF file structure determines how objects are stored in a PDF file, how they are
accessed, and how they are updated. This structure is independent of the semantics of the objects. Sub-
clause 7.5, "File Structure," describes the file structure. Sub-clause 7.6, "Encryption," describes a file-level
mechanism for protecting a document’s contents from unauthorized access.

e Document structure. The PDF document structure specifies how the basic object types are used to
represent components of a PDF document: pages, fonts, annotations, and so forth. Sub-clause 7.7,
"Document Structure,” describes the overall document structure; later clauses address the detailed
semantics of the components.

« Content streams. A PDF content stream contains a sequence of instructions describing the appearance of
a page or other graphical entity. These instructions, while also represented as objects, are conceptually
distinct from the objects that represent the document structure and are described separately. Sub-clause
7.8, "Content Streams and Resources," discusses PDF content streams and their associated resources.

Objects
File Content
structure stream
Document
structure

Figure 1 — PDF Components
In addition, this clause describes some data structures, built from basic objects, that are so widely used that
they can almost be considered basic object types in their own right. These objects are covered in: 7.9,
"Common Data Structures"; 7.10, "Functions"”; and 7.11, "File Specifications."

NOTE Variants of PDF’s object and file syntax are also used as the basis for other file formats. These include the
Forms Data Format (FDF), described in 12.7.7, "Forms Data Format", and the Portable Job Ticket Format
(PJTF), described in Adobe Technical Note #5620, Portable Job Ticket Format.

7.2 Lexical Conventions

7.2.1 General

At the most fundamental level, a PDF file is a sequence of bytes. These bytes can be grouped into tokens
according to the syntax rules described in this sub-clause. One or more tokens are assembled to form higher-

o Adobe Systems Incorporated 2008 — All rights reserved 11

PDF 32000-1:2008

level syntactic entities, principally objects, which are the basic data values from which a PDF document is
constructed.

A non-encrypted PDF can be entirely represented using byte values corresponding to the visible printable
subset of the character set defined in ANSI X3.4-1986, plus white space characters. However, a PDF file is not
restricted to the ASCII character set; it may contain arbitrary bytes, subject to the following considerations:

e The tokens that delimit objects and that describe the structure of a PDF file shall use the ASCII character
set. In addition all the reserved words and the names used as keys in PDF standard dictionaries and
certain types of arrays shall be defined using the ASCII character set.

e The data values of strings and streams objects may be written either entirely using the ASCII character set
or entirely in binary data. In actual practice, data that is naturally binary, such as sampled images, is
usually represented in binary for compactness and efficiency.

* A PDF file containing binary data shall be transported as a binary file rather than as a text file to insure that
all bytes of the file are faithfully preserved.

NOTE 1 A binary file is not portable to environments that impose reserved character codes, maximum line lengths, end-
of-line conventions, or other restrictions

NOTE 2 In this clause, the usage of the term character is entirely independent of any logical meaning that the value
may have when it is treated as data in specific contexts, such as representing human-readable text or
selecting a glyph from a font.

7.2.2 Character Set

The PDF character set is divided into three classes, called regular, delimiter, and white-space characters. This
classification determines the grouping of characters into tokens. The rules defined in this sub-clause apply to
all characters in the file except within strings, streams, and comments.

The White-space characters shown in Table 1 separate syntactic constructs such as names and numbers from
each other. All white-space characters are equivalent, except in comments, strings, and streams. In all other
contexts, PDF treats any sequence of consecutive white-space characters as one character.

Table 1 — White-space characters

Decimal Hexadecimal Octal Name

0 00 000 Null (NUL)

9 09 011 HORIZONTAL TAB (HT)
10 O0A 012 LINE FEED (LF)

12 ocC 014 FORM FEED (FF)

13 0D 015 CARRIAGE RETURN (CR)
32 20 040 SPACE (SP)

The CARRIAGE RETURN (0Dh) and LINE FEED (0Ah) characters, also called newline characters, shall be
treated as end-of-line (EOL) markers. The combination of a CARRIAGE RETURN followed immediately by a
LINE FEED shall be treated as one EOL marker. EOL markers may be treated the same as any other white-
space characters. However, sometimes an EOL marker is required or recommended—that is, preceding a
token that must appear at the beginning of a line.

NOTE The examples in this standard use a convention that arranges tokens into lines. However, the examples’ use of
white space for indentation is purely for clarity of exposition and need not be included in practical use.

12 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

The delimiter characters (,), <, >, [, I, {, }, /, and % are special (LEFT PARENTHESIS (28h), RIGHT
PARENTHESIS (29h), LESS-THAN SIGN (3Ch), GREATER-THAN SIGN (3Eh), LEFT SQUARE BRACKET
(5Bh), RIGHT SQUARE BRACKET (5Dh), LEFT CURLY BRACE (7Bh), RIGHT CURLY BRACE (07Dh),
SOLIDUS (2Fh) and PERCENT SIGN (25h), respectively). They delimit syntactic entities such as arrays,
names, and comments. Any of these characters terminates the entity preceding it and is not included in the
entity. Delimiter characters are allowed within the scope of a string when following the rules for composing
strings; see 7.3.4.2, “Literal Strings”. The leading (of a string does delimit a preceding entity and the closing) of
a string delimits the string’s end.

Table 2 — Delimiter characters

Glyph Decimal Hexadecimal | Octal Name

(40 28 50 LEFT PARENTHESIS

) 41 29 51 RIGHT PARENTHESIS

< 60 3C 60 LESS-THAN SIGN

> 62 3E 62 GREATER-THAN SIGN

[91 5B 133 LEFT SQUARE BRACKET
] 93 5D 135 RIGHT SQUARE BRACKET
{ 123 7B 173 LEFT CURLY BRACKET

} 125 7D 175 RIGHT CURLY BRACKET
/ 47 2F 57 SOLIDUS

% 37 25 45 PERCENT SIGN

All characters except the white-space characters and delimiters are referred to as regular characters. These
characters include bytes that are outside the ASCII character set. A sequence of consecutive regular
characters comprises a single token. PDF is case-sensitive; corresponding uppercase and lowercase letters
shall be considered distinct.

7.2.3 Comments

Any occurrence of the PERCENT SIGN (25h) outside a string or stream introduces a comment. The comment
consists of all characters after the PERCENT SIGN and up to but not including the end of the line, including
regular, delimiter, SPACE (20h), and HORZONTAL TAB characters (09h). A conforming reader shall ignore
comments, and treat them as single white-space characters. That is, a comment separates the token preceding
it from the one following it.

EXAMPLE The PDF fragment in this example is syntactically equivalent to just the tokens abc and 123.

abc% comment (/%) blah blah blah
123

Comments (other than the %PDF-n.m and %%EOF comments described in 7.5, "File Structure") have no
semantics. They are not necessarily preserved by applications that edit PDF files.

7.3 Objects

7.3.1 General

PDF includes eight basic types of objects: Boolean values, Integer and Real numbers, Strings, Names, Arrays,
Dictionaries, Streams, and the null object.

o Adobe Systems Incorporated 2008 — All rights reserved 13

PDF 32000-1:2008

Objects may be labelled so that they can be referred to by other objects. A labelled object is called an indirect
object (see 7.3.10, "Indirect Objects").

Each object type, their method of creation and their proper referencing as indirect objects is described in 7.3.2,
"Boolean Objects" through 7.3.10, "Indirect Objects."

7.3.2 Boolean Objects

Boolean objects represent the logical values of true and false. They appear in PDF files using the keywords
true and false.

7.3.3 Numeric Objects

PDF provides two types of numeric objects: integer and real. Integer objects represent mathematical integers.
Real objects represent mathematical real numbers. The range and precision of numbers may be limited by the
internal representations used in the computer on which the conforming reader is running; Annex C gives these
limits for typical implementations.

An integer shall be written as one or more decimal digits optionally preceded by a sign. The value shall be
interpreted as a signed decimal integer and shall be converted to an integer object.

EXAMPLE 1 Integer objects

123 43445 +17 -98 O

A real value shall be written as one or more decimal digits with an optional sign and a leading, trailing, or
embedded PERIOD (2Eh) (decimal point). The value shall be interpreted as a real number and shall be
converted to a real object.

EXAMPLE 2 Real objects

345 -3.62 +1236 4. -002 0.0

NOTE 1 A conforming writer shall not use the PostScript syntax for numbers with non-decimal radices (such as
16#FFFE) or in exponential format (such as 6.02E23).

NOTE 2 Throughout this standard, the term number refers to an object whose type may be either integer or real.
Wherever a real number is expected, an integer may be used instead. For example, it is not necessary to write
the number 1.0 in real format; the integer 1 is sufficient.

7.3.4 String Objects

7.3.4.1 General

A string object shall consist of a series of zero or more bytes. String objects are not integer objects, but are
stored in a more compact format. The length of a string may be subject to implementation limits; see Annex C.

String objects shall be written in one of the following two ways:

* As a sequence of literal characters enclosed in parentheses () (using LEFT PARENTHESIS (28h) and
RIGHT PARENThESIS (29h)); see 7.3.4.2, "Literal Strings."

« As hexadecimal data enclosed in angle brackets <> (using LESS-THAN SIGN (3Ch) and GREATER-
THAN SIGN (3Eh)); see 7.3.4.3, "Hexadecimal Strings."

NOTE In many contexts, conventions exist for the interpretation of the contents of a string value. This sub-clause
defines only the basic syntax for writing a string as a sequence of bytes; conventions or rules governing the
contents of strings in particular contexts are described with the definition of those particular contexts.

14 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

7.9.2, "String Object Types," describes the encoding schemes used for the contents of string objects.

7.3.4.2 Literal Strings

A literal string shall be written as an arbitrary number of characters enclosed in parentheses. Any characters
may appear in a string except unbalanced parentheses (LEFT PARENHESIS (28h) and RIGHT
PARENTHESIS (29h)) and the backslash (REVERSE SOLIDUS (5Ch)), which shall be treated specially as
described in this sub-clause. Balanced pairs of parentheses within a string require no special treatment.

EXAMPLE 1 The following are valid literal strings:
(This is a string)
(Strings may contain newlines
and such.)
(Strings may contain balanced parentheses () and
special characters (*!&}"% and so on).)
(The following is an empty string.)
0
(It has zero (0) length.)

Within a literal string, the REVERSE SOLIDUS is used as an escape character. The character immediately
following the REVERSE SOLIDUS determines its precise interpretation as shown in Table 3. If the character
following the REVERSE SOLIDUS is not one of those shown in Table 3, the REVERSE SOLIDUS shall be
ignored.

Table 3 — Escape sequences in literal strings

Sequence Meaning

\n LINE FEED (0Ah) (LF)

\r CARRIAGE RETURN (0Dh) (CR)

\t HORIZONTAL TAB (09h) (HT)

\b BACKSPACE (08h) (BS)

\f FORM FEED (FF)

\(LEFT PARENTHESIS (28h)

\) RIGHT PARENTHESIS (29h)

\ REVERSE SOLIDUS (5Ch) (Backslash)
\ddd Character code ddd (octal)

A conforming writer may split a literal string across multiple lines. The REVERSE SOLIDUS (5Ch) (backslash
character) at the end of a line shall be used to indicate that the string continues on the following line. A
conforming reader shall disregard the REVERSE SOLIDUS and the end-of-line marker following it when
reading the string; the resulting string value shall be identical to that which would be read if the string were not
split.

EXAMPLE 2 (These \
two strings \
are the same.)
(These two strings are the same.)

An end-of-line marker appearing within a literal string without a preceding REVERSE SOLIDUS shall be treated

as a byte value of (OAh), irrespective of whether the end-of-line marker was a CARRIAGE RETURN (0Dh), a
LINE FEED (0Ah), or both.

o Adobe Systems Incorporated 2008 — All rights reserved 15

PDF 32000-1:2008

EXAMPLE 3 (This string has an end-of-line at the end of it.
)

(So does this one.\n)
The \ddd escape sequence provides a way to represent characters outside the printable ASCII character set.
EXAMPLE 4 (This string contains \245two octal characters\307.)

The number ddd may consist of one, two, or three octal digits; high-order overflow shall be ignored. Three octal
digits shall be used, with leading zeros as needed, if the next character of the string is also a digit.

EXAMPLE 5 the literal
(\0053)
denotes a string containing two characters, \005 (Control-E) followed by the digit 3, whereas both
(\053)
and
(\53)
denote strings containing the single character \053, a plus sign (+).

Since any 8-bit value may appear in a string (with proper escaping for REVERSE SOLIDUS (backslash) and
unbalanced PARENTHESES) this \ddd notation provides a way to specify characters outside the ASCII
character set by using ASCII characters only. However, any 8-bit value may appear in a string, represented
either as itself or with the \ddd notation described.

When a document is encrypted (see 7.6, “Encryption”), all of its strings are encrypted; the encrypted string
values contain arbitrary 8-bit values. When writing encrypted strings using the literal string form, the conforming
writer shall follow the rules described. That is, the REVERSE SOLIDUS character shall be used as an escape
to specify unbalanced PARENTHESES or the REVERSE SOLIDUS character itself. The REVERSE SOLIDUS
may, but is not required, to be used to specify other, arbitrary 8-bit values.

7.3.4.3 Hexadecimal Strings

Strings may also be written in hexadecimal form, which is useful for including arbitrary binary data in a PDF file.
A hexadecimal string shall be written as a sequence of hexadecimal digits (0—9 and either A—F or a—f) encoded
as ASCII characters and enclosed within angle brackets (using LESS-THAN SIGN (3Ch) and GREATER-
THAN SIGN (3Eh)).

EXAMPLE 1 <4E6F762073686D6F7A206B6120706F702E >

Each pair of hexadecimal digits defines one byte of the string. White-space characters (such as SPACE (20h),
HORIZONTAL TAB (09h), CARRIAGE RETURN (0Dh), LINE FEED (0Ah), and FORM FEED (0Ch)) shall be
ignored.

If the final digit of a hexadecimal string is missing—that is, if there is an odd number of digits—the final digit
shall be assumed to be O.

EXAMPLE 2 <901FA3>
is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F, and A3, but
<901FA>
is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F, and AO.

7.3.5 Name Objects

Beginning with PDF 1.2 a name object is an atomic symbol uniquely defined by a sequence of any characters
(8-bit values) except null (character code 0). Uniquely defined means that any two name objects made up of
the same sequence of characters denote the same object. Atomic means that a name has no internal structure;
although it is defined by a sequence of characters, those characters are not considered elements of the name.

16 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

When writing a name in a PDF file, a SOLIDUS (2Fh) (/) shall be used to introduce a name. The SOLIDUS is
not part of the name but is a prefix indicating that what follows is a sequence of characters representing the
name in the PDF file and shall follow these rules:

a) A NUMBER SIGN (23h) (#) in a name shall be written by using its 2-digit hexadecimal code (23), preceded
by the NUMBER SIGN.

b) Any character in a name that is a regular character (other than NUMBER SIGN) shall be written as itself or
by using its 2-digit hexadecimal code, preceded by the NUMBER SIGN.

c) Any character that is not a regular character shall be written using its 2-digit hexadecimal code, preceded
by the NUMBER SIGN only.

NOTE 1 There is not a unique encoding of names into the PDF file because regular characters may be
coded in either of two ways.

White space used as part of a name shall always be coded using the 2-digit hexadecimal notation and no white
space may intervene between the SOLIDUS and the encoded name.

Regular characters that are outside the range EXCLAMATION MARK(21h) (1) to TILDE (7Eh) (=) should be
written using the hexadecimal notation.

The token SOLIDUS (a slash followed by no regular characters) introduces a unique valid name defined by the
empty sequence of characters.

NOTE 2 The examples shown in Table 4 and containing # are not valid literal names in PDF 1.0 or 1.1.

Table 4 — Examples of literal names

Syntax for Literal name Resulting Name
/Namel Namel
/ASomewhatLongerName ASomewhatLongerName
/A;Name_With-Various***Characters? A;Name_With-Various***Characters?
/1.2 1.2

1$$ $$

/@pattern @pattern

/.notdef .notdef

/lime#20Green Lime Green
/paired#28#29parentheses paired()parentheses
/The_Key_of F#23 Minor The_Key_of _F# Minor
IA#42 AB

In PDF, literal names shall always be introduced by the SOLIDUS character (/), unlike keywords such as true,
false, and obj.

NOTE 3 This standard follows a typographic convention of writing hames without the leading SOLIDUS when they
appear in running text and tables. For example, Type and FullScreen denote names that would actually be
written in a PDF file (and in code examples in this standard) as /Type and /FullScreen.

The length of a name shall be subject to an implementation limit; see Annex C. The limit applies to the number

of characters in the name’s internal representation. For example, the name /A#20B has three characters (A,
SPACE, B), not six.

o Adobe Systems Incorporated 2008 — All rights reserved 17

PDF 32000-1:2008

As stated above, name objects shall be treated as atomic within a PDF file. Ordinarily, the bytes making up the
name are never treated as text to be presented to a human user or to an application external to a conforming
reader. However, occasionally the need arises to treat a name object as text, such as one that represents a font
name (see the BaseFont entry in Table 111), a colorant name in a separation or DeviceN colour space, or a
structure type (see 14.7.3, "Structure Types").

In such situations, the sequence of bytes (after expansion of NUMBER SIGN sequences, if any) should be
interpreted according to UTF-8, a variable-length byte-encoded representation of Unicode in which the
printable ASCII characters have the same representations as in ASCIIl. This enables a name object to
represent text virtually in any natural language, subject to the implementation limit on the length of a name.

NOTE 4 PDF does not prescribe what UTF-8 sequence to choose for representing any given piece of externally
specified text as a name object. In some cases, multiple UTF-8 sequences may represent the same logical
text. Name objects defined by different sequences of bytes constitute distinct name objects in PDF, even
though the UTF-8 sequences may have identical external interpretations.

7.3.6 Array Objects

An array object is a one-dimensional collection of objects arranged sequentially. Unlike arrays in many other
computer languages, PDF arrays may be heterogeneous; that is, an array’s elements may be any combination
of numbers, strings, dictionaries, or any other objects, including other arrays. An array may have zero
elements.

An array shall be written as a sequence of objects enclosed in SQUARE BRACKETS (using LEFT SQUARE
BRACKET (5Bh) and RIGHT SQUARE BRACKET (5Dh)).

EXAMPLE [549 3.14 false (Ralph) /SomeName]

PDF directly supports only one-dimensional arrays. Arrays of higher dimension can be constructed by using
arrays as elements of arrays, nested to any depth.

7.3.7 Dictionary Objects

A dictionary object is an associative table containing pairs of objects, known as the dictionary’s entries. The first
element of each entry is the key and the second element is the value. The key shall be a name (unlike
dictionary keys in PostScript, which may be objects of any type). The value may be any kind of object, including
another dictionary. A dictionary entry whose value is null (see 7.3.9, "Null Object") shall be treated the same as
if the entry does not exist. (This differs from PostScript, where null behaves like any other object as the value
of a dictionary entry.) The number of entries in a dictionary shall be subject to an implementation limit; see
Annex C. A dictionary may have zero entries.

The entries in a dictionary represent an associative table and as such shall be unordered even though an
arbitrary order may be imposed upon them when written in a file. That ordering shall be ignored.

Multiple entries in the same dictionary shall not have the same key.

A dictionary shall be written as a sequence of key-value pairs enclosed in double angle brackets (<<...>>)
(using LESS-THAN SIGNs (3Ch) and GREATER-THAN SIGNs (3Eh)).

EXAMPLE << [Type /Example

/Subtype /DictionaryExample

/Version 0.01

/Integerltem 12

/Stringltem (a string)

/Subdictionary << /lteml 0.4
/ltem2 true
/Lastltem (not!)
/VeryLastltem (OK)

>>
>>

18 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

NOTE Do not confuse the double angle brackets with single angle brackets (< and >) (using LESS-THAN SIGN (3Ch)
and GREATER-THAN SIGN (3Eh)), which delimit a hexadecimal string (see 7.3.4.3, "Hexadecimal Strings").

Dictionary objects are the main building blocks of a PDF document. They are commonly used to collect and tie
together the attributes of a complex object, such as a font or a page of the document, with each entry in the
dictionary specifying the name and value of an attribute. By convention, the Type entry of such a dictionary, if
present, identifies the type of object the dictionary describes. In some cases, a Subtype entry (sometimes
abbreviated S) may be used to further identify a specialized subcategory of the general type. The value of the
Type or Subtype entry shall always be a hame. For example, in a font dictionary, the value of the Type entry
shall always be Font, whereas that of the Subtype entry may be Typel, TrueType, or one of several other
values.

The value of the Type entry can almost always be inferred from context. The value of an entry in a page's font
resource dictionary, for example, shall be a font object; therefore, the Type entry in a font dictionary serves
primarily as documentation and as information for error checking. The Type entry shall not be required unless
so stated in its description; however, if the entry is present, it shall have the correct value. In addition, the value
of the Type entry in any dictionary, even in private data, shall be either a name defined in this standard or a
registered name; see Annex E for details.

7.3.8 Stream Objects

7.3.8.1 General

A stream object, like a string object, is a sequence of bytes. Furthermore, a stream may be of unlimited length,
whereas a string shall be subject to an implementation limit. For this reason, objects with potentially large
amounts of data, such as images and page descriptions, shall be represented as streams.

NOTE 1 This sub-clause describes only the syntax for writing a stream as a sequence of bytes. The context in which a
stream is referenced determines what the sequence of bytes represent.

A stream shall consist of a dictionary followed by zero or more bytes bracketed between the keywords stream
(followed by newline) and endstream:

EXAMPLE dictionary
stream
...Zero or more bytes...
endstream

All streams shall be indirect objects (see 7.3.10, "Indirect Objects") and the stream dictionary shall be a direct
object. The keyword stream that follows the stream dictionary shall be followed by an end-of-line marker
consisting of either a CARRIAGE RETURN and a LINE FEED or just a LINE FEED, and not by a CARRIAGE
RETURN alone. The sequence of bytes that make up a stream lie between the end-of-line marker following the
stream keyword and the endstream keyword; the stream dictionary specifies the exact number of bytes. There
should be an end-of-line marker after the data and before endstream; this marker shall not be included in the
stream length. There shall not be any extra bytes, other than white space, between endstream and endob;.

Alternatively, beginning with PDF 1.2, the bytes may be contained in an external file, in which case the stream
dictionary specifies the file, and any bytes between stream and endstream shall be ignored by a conforming
reader.

NOTE 2 Without the restriction against following the keyword stream by a CARRIAGE RETURN alone, it would be
impossible to differentiate a stream that uses CARRIAGE RETURN as its end-of-line marker and has a LINE
FEED as its first byte of data from one that uses a CARRIAGE RETURN-LINE FEED sequence to denote end-
of-line.

Table 5 lists the entries common to all stream dictionaries; certain types of streams may have additional
dictionary entries, as indicated where those streams are described. The optional entries regarding filters for the
stream indicate whether and how the data in the stream shall be transformed (decoded) before it is used.
Filters are described further in 7.4, "Filters."

o Adobe Systems Incorporated 2008 — All rights reserved 19

PDF 32000-1:2008

7.3.8.2 Stream Extent

Every stream dictionary shall have a Length entry that indicates how many bytes of the PDF file are used for
the stream’s data. (If the stream has a filter, Length shall be the number of bytes of encoded data.) In addition,
most filters are defined so that the data shall be self-limiting; that is, they use an encoding scheme in which an
explicit end-of-data (EOD) marker delimits the extent of the data. Finally, streams are used to represent many
objects from whose attributes a length can be inferred. All of these constraints shall be consistent.

EXAMPLE An image with 10 rows and 20 columns, using a single colour component and 8 bits per component,
requires exactly 200 bytes of image data. If the stream uses a filter, there shall be enough bytes of
encoded data in the PDF file to produce those 200 bytes. An error occurs if Length is too small, if an
explicit EOD marker occurs too soon, or if the decoded data does not contain 200 bytes.

Itis also an error if the stream contains too much data, with the exception that there may be an extra end-of-line
marker in the PDF file before the keyword endstream.

Table 5 — Entries common to all stream dictionaries

Key Type Value

Length integer (Required) The number of bytes from the beginning of the line
following the keyword stream to the last byte just before the
keyword endstream. (There may be an additional EOL
marker, preceding endstream, that is not included in the count
and is not logically part of the stream data.) See 7.3.8.2,
"Stream Extent", for further discussion.

Filter name or array (Optional) The name of a filter that shall be applied in
processing the stream data found between the keywords
stream and endstream, or an array of zero, one or several
names. Multiple filters shall be specified in the order in which
they are to be applied.

DecodeParms dictionary or array (Optional) A parameter dictionary or an array of such
dictionaries, used by the filters specified by Filter. If there is
only one filter and that filter has parameters, DecodeParms
shall be set to the filter's parameter dictionary unless all the
filter’s parameters have their default values, in which case the
DecodeParms entry may be omitted. If there are multiple
filters and any of the filters has parameters set to nondefault
values, DecodeParms shall be an array with one entry for
each filter: either the parameter dictionary for that filter, or the
null object if that filter has no parameters (or if all of its
parameters have their default values). If none of the filters
have parameters, or if all their parameters have default values,
the DecodeParms entry may be omitted.

F file specification (Optional; PDF 1.2) The file containing the stream data. If this
entry is present, the bytes between stream and endstream
shall be ignored. However, the Length entry should still specify
the number of those bytes (usually, there are no bytes and
Length is 0). The filters that are applied to the file data shall be
specified by FFilter and the filter parameters shall be specified
by FDecodeParms.

FFilter name or array (Optional; PDF 1.2) The name of a filter to be applied in
processing the data found in the stream’s external file, or an
array of zero, one or several such names. The same rules
apply as for Filter.

FDecodeParms dictionary or array (Optional; PDF 1.2) A parameter dictionary, or an array of such
dictionaries, used by the filters specified by FFilter. The same
rules apply as for DecodeParms.

20 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 5 — Entries common to all stream dictionaries (continued)

Key Type Value

DL integer (Optional; PDF 1.5) A non-negative integer representing the
number of bytes in the decoded (defiltered) stream. It can be
used to determine, for example, whether enough disk space is
available to write a stream to a file.

This value shall be considered a hint only; for some stream
filters, it may not be possible to determine this value precisely.

7.3.9 Null Object

The null object has a type and value that are unequal to those of any other object. There shall be only one
object of type null, denoted by the keyword null. An indirect object reference (see 7.3.10, "Indirect Objects") to
a nonexistent object shall be treated the same as a null object. Specifying the null object as the value of a
dictionary entry (7.3.7, "Dictionary Objects") shall be equivalent to omitting the entry entirely.

7.3.10 Indirect Objects

Any object in a PDF file may be labelled as an indirect object. This gives the object a unique object identifier by
which other objects can refer to it (for example, as an element of an array or as the value of a dictionary entry).
The object identifier shall consist of two parts:

« A positive integer object number. Indirect objects may be numbered sequentially within a PDF file, but this
is not required; object numbers may be assigned in any arbitrary order.

« A non-negative integer generation number. In a newly created file, all indirect objects shall have generation
numbers of 0. Nonzero generation numbers may be introduced when the file is later updated; see sub-
clauses 7.5.4, "Cross-Reference Table" and 7.5.6, "Incremental Updates."

Together, the combination of an object number and a generation number shall uniquely identify an indirect
object.

The definition of an indirect object in a PDF file shall consist of its object number and generation number
(separated by white space), followed by the value of the object bracketed between the keywords obj and
endobj.

EXAMPLE 1 Indirect object definition

12 0 obj

(Brillig)
endobj

Defines an indirect string object with an object number of 12, a generation number of 0, and the value

Brillig.

The object may be referred to from elsewhere in the file by an indirect reference. Such indirect references shall
consist of the object number, the generation nhumber, and the keyword R (with white space separating each

part):
120 R
Beginning with PDF 1.5, indirect objects may reside in object streams (see 7.5.7, "Object Streams"). They are

referred to in the same way; however, their definition shall not include the keywords obj and endobj, and their
generation number shall be zero.

o Adobe Systems Incorporated 2008 — All rights reserved 21

PDF 32000-1:2008

An indirect reference to an undefined object shall not be considered an error by a conforming reader; it shall be
treated as a reference to the null object.

EXAMPLE 2 If a file contains the indirect reference 17 0 R but does not contain the corresponding definition then the
indirect reference is considered to refer to the null object.

Except were documented to the contrary any object value may be a direct or an indirect reference; the
semantics are equivalent.

EXAMPLE 3 The following shows the use of an indirect object to specify the length of a stream. The value of the
stream’s Length entry is an integer object that follows the stream in the file. This allows applications that
generate PDF in a single pass to defer specifying the stream’s length until after its contents have been
generated.

7 0 obj
<< /Length 80 R >> % An indirect reference to object 8
stream
BT
/F1 12 Tf
72 712 Td
(A stream with an indirect length) Tj
ET
endstream
endobj

8 0 obj
77 % The length of the preceding stream
endobj

7.4 Filters

7.4.1 General

Stream filters are introduced in 7.3.8, "Stream Objects." An option when reading stream data is to decode it
using a filter to produce the original non-encoded data. Whether to do so and which decoding filter or filters to
use may be specified in the stream dictionary.

EXAMPLE 1 If a stream dictionary specifies the use of an ASCIlIHexDecode filter, an application reading the data in
that stream should transform the ASCII hexadecimal-encoded data in that stream in order to obtain the
original binary data.

A conforming writer may encode data in a stream (for example, data for sampled images) to compress it or to
convert it to a portable ASCII representation (or both). A conforming reader shall invoke the corresponding
decoding filter or filters to convert the information back to its original form.

The filter or filters for a stream shall be specified by the Filter entry in the stream’s dictionary (or the FFilter
entry if the stream is external). Filters may be cascaded to form a pipeline that passes the stream through two
or more decoding transformations in sequence. For example, data encoded using LZW and ASCII base-85
encoding (in that order) shall be decoded using the following entry in the stream dictionary:

EXAMPLE 2 [Filter [/ASCII85Decode /LZWDecode]

Some filters may take parameters to control how they operate. These optional parameters shall be specified by
the DecodeParms entry in the stream’s dictionary (or the FDecodeParms entry if the stream is external).

PDF supports a standard set of filters that fall into two main categories:

e ASCII filters enable decoding of arbitrary binary data that has been encoded as ASCII text (see 7.2,
"Lexical Conventions," for an explanation of why this type of encoding might be useful).

22 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

» Decompression filters enable decoding of data that has been compressed. The compressed data shall be
in binary format, even if the original data is ASCII text.

NOTE 1 ASCI! filters serve no useful purpose in a PDF file that is encrypted; see 7.6, “Encryption”.

NOTE 2 Compression is particularly valuable for large sampled images, since it reduces storage requirements and
transmission time. Some types of compression are lossy, meaning that some data is lost during the encoding,
resulting in a loss of quality when the data is decompressed. Compression in which no loss of data occurs is
called lossless. Though somehow obvious it might be worth pointing out that lossy compression can only be
applied to sampled image data (and only certain types of lossy compression for certain types of images).
Lossless compression on the other hand can be used for any kind of stream.

The standard filters are summarized in Table 6, which also indicates whether they accept any optional
parameters. The following sub-clauses describe these filters and their parameters (if any) in greater detail,
including specifications of encoding algorithms for some filters.

Table 6 — Standard filters

FILTER name Parameters Description

ASCIlIHexDecode no Decodes data encoded in an ASCIl hexadecimal
representation, reproducing the original binary data.

ASCII85Decode no Decodes data encoded in an ASCII base-85 representation,
reproducing the original binary data.

LZWDecode yes Decompresses data encoded using the LZW (Lempel-Ziv-
Welch) adaptive compression method, reproducing the original
text or binary data.

FlateDecode yes (PDF 1.2) Decompresses data encoded using the zlib/deflate
compression method, reproducing the original text or binary
data.

RunLengthDecode | no Decompresses data encoded using a byte-oriented run-length

encoding algorithm, reproducing the original text or binary data
(typically monochrome image data, or any data that contains
frequent long runs of a single byte value).

CCITTFaxDecode yes Decompresses data encoded using the CCITT facsimile
standard, reproducing the original data (typically monochrome
image data at 1 bit per pixel).

JBIG2Decode yes (PDF 1.4) Decompresses data encoded using the JBIG2
standard, reproducing the original monochrome (1 bit per pixel)
image data (or an approximation of that data).

DCTDecode yes Decompresses data encoded using a DCT (discrete cosine
transform) technique based on the JPEG standard,
reproducing image sample data that approximates the original

data.

JPXDecode no (PDF 1.5) Decompresses data encoded using the wavelet-
based JPEG2000 standard, reproducing the original image
data.

Crypt yes (PDF 1.5) Decrypts data encrypted by a security handler,

reproducing the data as it was before encryption.

EXAMPLE 3 The following example shows a stream, containing the marking instructions for a page, that was
compressed using the LZW compression method and then encoded in ASCII base-85 representation.

1 0 obj
<< /Length 534
[Filter [/ASCII85Decode /LZWDecode]
>>

o Adobe Systems Incorporated 2008 — All rights reserved 23

PDF 32000-1:2008

stream

J..)6T ?p&<!1J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#In $"<Atdi"\Vn%b%)&'cA*VnK\CJY (sF>c!Inl@
RM]WM;jjH6GNc75idkL5]+cPZKEBPWdR>FF(kjl_R%W_d
&/jSliuad7h?[L-F$+]]J0A3Ck*$I0KZ?;<)CItqi65Xb
Vc3\n5ua: Q/=0$W<#N3U;H,MQKqgfgl?:IUpR;60N[C2E4
ZNr8Udn.'p+?#X+1>0Kuk$bCDF/(3fL5]0q)"kJZ!C2H1
"TOJRI?Q:&'<5&iP!$Rq;BXRecDN[IJB’,)08XJOSJ9sD
SIhQ;Rj@!ND)bD_qg&C\g:inY C%)&u#:u,M6Bm%lIY!Kb1+
":aAa'S ViJglLb8<W9k6YINOMcJIQkDelLWdPN?9A'jX*
al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,
JD?M$0QP)IKn06I1apKDC@\qJ4B!(5m+j.7F790m(Vj8
8I8Q:_CZ(Gm1%X\N1&u!FKHMB~>

endstream

endobj

EXAMPLE 4 The following shows the same stream without any filters applied to it. (The stream’s contents are
explained in 7.8.2, "Content Streams," and the operators used there are further described in clause 9,
"Text".)

1 0 obj
<< /Length 568 >>
stream
2]
BT
/[F1 12 Tf
0 Tc
0 Tw
725 712 TD
[(Unfiltered streams can be read easily) 65 (,)] TJ
0 -14 TD
[(b) 20 (ut generally tak) 10 (e more space than\311)] TJ
T* (compressed streams.) Tj
0 -28 TD
[(Se) 25 (v) 15 (eral encoding methods are a) 20 (v) 25 (ailable in PDF) 80 (.)] TJ
0 -14 TD
(Some are used for compression and others simply) Tj
T* [(to represent binary data in an) 55 (ASCII format.)] TJ
T* (Some of the compression filters are \
suitable) Tj
T* (for both data and images, while others are \
suitable only) Tj
T* (for continuous-tone images.) Tj
ET
endstream
endobj

7.4.2 ASCIlIHexDecode Filter

The ASCIlIHexDecode filter decodes data that has been encoded in ASCIlI hexadecimal form. ASCII
hexadecimal encoding and ASCII base-85 encoding (7.4.3, "ASCII85Decode Filter") convert binary data, such
as image data or previously compressed data, to 7-bit ASCII characters.

NOTE ASCII base-85 encoding is preferred to ASCII hexadecimal encoding. Base-85 encoding is preferred because
it is more compact: it expands the data by a factor of 4:5, compared with 1:2 for ASCIl hexadecimal encoding.

The ASCIlIHexDecode filter shall produce one byte of binary data for each pair of ASCIl hexadecimal digits
(09 and A-F or a—f). All white-space characters (see 7.2, "Lexical Conventions") shall be ignored. A
GREATER-THAN SIGN (3Eh) indicates EOD. Any other characters shall cause an error. If the filter encounters
the EOD marker after reading an odd number of hexadecimal digits, it shall behave as if a 0 (zero) followed the
last digit.

24 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

7.4.3 ASCII85Decode Filter

The ASCII85Decode filter decodes data that has been encoded in ASCIl base-85 encoding and produces
binary data. The following paragraphs describe the process for encoding binary data in ASCIl base-85; the
ASCII85Decode filter reverses this process.

The ASCII base-85 encoding shall use the ASCII characters ! through u ((21h) - (75h)) and the character z
(7Ah), with the 2-character sequence ~> (7Eh)(3Eh) as its EOD marker. The ASCII85Decode filter shall ignore
all white-space characters (see 7.2, "Lexical Conventions"). Any other characters, and any character
sequences that represent impossible combinations in the ASCII base-85 encoding shall cause an error.

Specifically, ASCII base-85 encoding shall produce 5 ASCII characters for every 4 bytes of binary data. Each
group of 4 binary input bytes, (b; b, bs b,), shall be converted to a group of 5 output bytes, (c; C5 C3 C4 C5),
using the relation

(by x 256%) + (by x 256°) + (by x 256 ") + b, =
(Cy %857)+(C,x85°) +(Cgx857) +(C, x 85 ") + ¢

In other words, 4 bytes of binary data shall be interpreted as a base-256 number and then shall be converted to
a base-85 number. The five bytes of the base-85 number shall then be converted to ASCII characters by
adding 33 (the ASCII code for the character !) to each. The resulting encoded data shall contain only printable
ASCII characters with codes in the range 33 (!) to 117 (u). As a special case, if all five bytes are 0, they shall be
represented by the character with code 122 (z) instead of by five exclamation points (!!!!1).

If the length of the data to be encoded is not a multiple of 4 bytes, the last, partial group of 4 shall be used to
produce a last, partial group of 5 output characters. Given n (1, 2, or 3) bytes of binary data, the encoder shall
first append 4 - n zero bytes to make a complete group of 4. It shall encode this group in the usual way, but
shall not apply the special z case. Finally, it shall write only the first n + 1 characters of the resulting group of 5.
These characters shall be immediately followed by the ~> EOD marker.

The following conditions shall never occur in a correctly encoded byte sequence:

e The value represented by a group of 5 characters is greater than 2321,
e Az character occurs in the middle of a group.

e Afinal partial group contains only one character.
7.4.4 LZWDecode and FlateDecode Filters

7.4.4.1 General

The LZWDecode and (PDF 1.2) FlateDecode filters have much in common and are discussed together in this
sub-clause. They decode data that has been encoded using the LZW or Flate data compression method,
respectively:

* LZW (Lempel-Ziv-Welch) is a variable-length, adaptive compression method that has been adopted as one
of the standard compression methods in the Tag Image File Format (TIFF) standard. For details on LZW
encoding see 7.4.4.2, "Details of LZW Encoding."

« The Flate method is based on the public-domain zlib/deflate compression method, which is a variable-
length Lempel-Ziv adaptive compression method cascaded with adaptive Huffman coding. It is fully
defined in Internet RFCs 1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE
Compressed Data Format Specification (see the Bibliography).

o Adobe Systems Incorporated 2008 — All rights reserved 25

PDF 32000-1:2008

Both of these methods compress either binary data or ASCII text but (like all compression methods) always
produce binary data, even if the original data was text.

The LZW and Flate compression methods can discover and exploit many patterns in the input data, whether
the data is text or images. As described later, both filters support optional transformation by a predictor
function, which improves the compression of sampled image data.

NOTE 1 Because of its cascaded adaptive Huffman coding, Flate-encoded output is usually much more compact than
LZW-encoded output for the same input. Flate and LZW decoding speeds are comparable, but Flate encoding
is considerably slower than LZW encoding.

NOTE 2 Usually, both Flate and LZW encodings compress their input substantially. However, in the worst case (in

which no pair of adjacent bytes appears twice), Flate encoding expands its input by no more than 11 bytes or a
factor of 1.003 (whichever is larger), plus the effects of algorithm tags added by PNG predictors. For LZW
encoding, the best case (all zeros) provides a compression approaching 1365:1 for long files, but the worst-
case expansion is at least a factor of 1.125, which can increase to nearly 1.5 in some implementations, plus
the effects of PNG tags as with Flate encoding.

7.4.4.2 Details of LZW Encoding

Data encoded using the LZW compression method shall consist of a sequence of codes that are 9 to 12 bits
long. Each code shall represent a single character of input data (0—255), a clear-table marker (256), an EOD
marker (257), or a table entry representing a multiple-character sequence that has been encountered
previously in the input (258 or greater).

Initially, the code length shall be 9 bits and the LZW table shall contain only entries for the 258 fixed codes. As
encoding proceeds, entries shall be appended to the table, associating new codes with longer and longer
sequences of input characters. The encoder and the decoder shall maintain identical copies of this table.

Whenever both the encoder and the decoder independently (but synchronously) realize that the current code
length is no longer sufficient to represent the number of entries in the table, they shall increase the number of
bits per code by 1. The first output code that is 10 bits long shall be the one following the creation of table entry
511, and similarly for 11 (1023) and 12 (2047) bits. Codes shall never be longer than 12 bits; therefore, entry
4095 is the last entry of the LZW table.

The encoder shall execute the following sequence of steps to generate each output code:

a) Accumulate a sequence of one or more input characters matching a sequence already present in the table.
For maximum compression, the encoder looks for the longest such sequence.

b) Emit the code corresponding to that sequence.

c) Create a new table entry for the first unused code. Its value is the sequence found in step (a) followed by
the next input character.

EXAMPLE 1 Suppose the input consists of the following sequence of ASCII character codes:
45 45 45 45 45 65 45 45 45 66
Starting with an empty table, the encoder proceeds as shown in Table 7.
Table 7 — Typical LZW encoding sequence
Input Output Code added Sequence
sequence code to table represented
by new code
- 256 (clear-table) - -
45 45 258 45 45
45 45 258 259 45 45 45
26 o Adobe Systems Incorporated 2008 — All rights reserved

Table 7 — Typical LZW encoding sequence (continued)

PDF 32000-1:2008

Input Output Code added Sequence

sequence code to table represented
by new code

45 45 258 260 45 45 65

65 65 261 65 45

45 45 45 259 262 45 45 45 66

66 66 - -

- 257 (EOD) - -

Codes shall be packed into a continuous bit stream, high-order bit first. This stream shall then be divided into
bytes, high-order bit first. Thus, codes may straddle byte boundaries arbitrarily. After the EOD marker (code
value 257), any leftover bits in the final byte shall be set to O.

In the example above, all the output codes are 9 bits long; they would pack into bytes as follows (represented in
hexadecimal):
EXAMPLE 2 80 OB 60 50 22 OC OC 85 01

To adapt to changing input sequences, the encoder may at any point issue a clear-table code, which causes

both the encoder and the decoder to restart with initial tables and a 9-bit code length. The encoder shall begin
by issuing a clear-table code. It shall issue a clear-table code when the table becomes full; it may do so sooner.

7.4.43 LZWDecode and FlateDecode Parameters

The LZWDecode and FlateDecode filters shall accept optional parameters to control the decoding process.
NOTE Most of these parameters are related to techniques that reduce the size of compressed sampled images
(rectangular arrays of colour values, described in 8.9, "Images”). For example, image data typically changes
very little from sample to sample. Therefore, subtracting the values of adjacent samples (a process called
differencing), and encoding the differences rather than the raw sample values, can reduce the size of the
output data. Furthermore, when the image data contains several colour components (red-green-blue or cyan-
magenta-yellow-black) per sample, taking the difference between the values of corresponding components in

adjacent samples, rather than between different colour components in the same sample, often reduces the
output data size.

Table 8 shows the parameters that may optionally be specified for LZWDecode and FlateDecode filters.
Except where otherwise noted, all values supplied to the decoding filter for any optional parameters shall match
those used when the data was encoded.

Table 8 — Optional parameters for LZWDecode and FlateDecode filters

Key Type Value

Predictor integer A code that selects the predictor algorithm, if any. If the value of this
entry is 1, the filter shall assume that the normal algorithm was used to
encode the data, without prediction. If the value is greater than 1, the
filter shall assume that the data was differenced before being encoded,
and Predictor selects the predictor algorithm. For more information
regarding Predictor values greater than 1, see 7.4.4.4, "LZW and

Flate Predictor Functions." Default value: 1.

Colors integer (May be used only if Predictor is greater than 1) The number of
interleaved colour components per sample. Valid values are 1 to 4

(PDF 1.0) and 1 or greater (PDF 1.3). Default value: 1.

o Adobe Systems Incorporated 2008 — All rights reserved 27

PDF 32000-1:2008

Table 8 — Optional parameters for LZWDecode and FlateDecode filters (continued)

Key Type Value

BitsPerComponent integer (May be used only if Predictor is greater than 1) The number of bits
used to represent each colour component in a sample. Valid values
are 1, 2, 4, 8, and (PDF 1.5) 16. Default value: 8.

Columns integer (May be used only if Predictor is greater than 1) The number of
samples in each row. Default value: 1.

EarlyChange integer (LzWDecode only) An indication of when to increase the code length.
If the value of this entry is 0, code length increases shall be postponed
as long as possible. If the value is 1, code length increases shall occur
one code early. This parameter is included because LZW sample code
distributed by some vendors increases the code length one code
earlier than necessary. Default value: 1.

7.4.4.4 LZW and Flate Predictor Functions

LZW and Flate encoding compress more compactly if their input data is highly predictable. One way of
increasing the predictability of many continuous-tone sampled images is to replace each sample with the
difference between that sample and a predictor function applied to earlier neighboring samples. If the predictor
function works well, the postprediction data clusters toward 0.

PDF supports two groups of predictor functions. The first, the TIFF group, consists of the single function that is
Predictor 2 in the TIFF 6.0 specification.

NOTE 1 (In the TIFF 6.0 specification, Predictor 2 applies only to LZW compression, but here it applies to Flate
compression as well.) TIFF Predictor 2 predicts that each colour component of a sample is the same as the
corresponding colour component of the sample immediately to its left.

The second supported group of predictor functions, the PNG group, consists of the filters of the World Wide
Web Consortium’s Portable Network Graphics recommendation, documented in Internet RFC 2083, PNG
(Portable Network Graphics) Specification (see the Bibliography).

The term predictors is used here instead of filters to avoid confusion.

There are five basic PNG predictor algorithms (and a sixth that chooses the optimum predictor function
separately for each row).

Table 9 — PNG predictor algorithms

PNG Description

Predictor

Algorithms

None No prediction

Sub Predicts the same as the sample to the left

Up Predicts the same as the sample above

Average Predicts the average of the sample to the left and the
sample above

Paeth A nonlinear function of the sample above, the sample
to the left, and the sample to the upper left

The predictor algorithm to be used, if any, shall be indicated by the Predictor filter parameter (see Table 8),
whose value shall be one of those listed in Table 10.

28 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

For LZWDecode and FlateDecode, a Predictor value greater than or equal to 10 shall indicate that a PNG
predictor is in use; the specific predictor function used shall be explicitly encoded in the incoming data. The
value of Predictor supplied by the decoding filter need not match the value used when the data was encoded if
they are both greater than or equal to 10.

Table 10 — Predictor values

Value Meaning

1 No prediction (the default value)

2 TIFF Predictor 2

10 PNG prediction (on encoding, PNG None on all rows)
11 PNG prediction (on encoding, PNG Sub on all rows)

12 PNG prediction (on encoding, PNG Up on all rows)

13 PNG prediction (on encoding, PNG Average on all rows)
14 PNG prediction (on encoding, PNG Paeth on all rows)
15 PNG prediction (on encoding, PNG optimum)

The two groups of predictor functions have some commonalities. Both make the following assumptions:

« Data shall be presented in order, from the top row to the bottom row and, within a row, from left to right.
« Arow shall occupy a whole number of bytes, rounded up if necessary.

« Samples and their components shall be packed into bytes from high-order to low-order bits.

e All colour components of samples outside the image (which are necessary for predictions near the
boundaries) shall be 0.

The predictor function groups also differ in significant ways:

e The postprediction data for each PNG-predicted row shall begin with an explicit algorithm tag; therefore,
different rows can be predicted with different algorithms to improve compression. TIFF Predictor 2 has no
such identifier; the same algorithm applies to all rows.

* The TIFF function group shall predict each colour component from the prior instance of that component,
taking into account the number of bits per component and components per sample. In contrast, the PNG
function group shall predict each byte of data as a function of the corresponding byte of one or more
previous image samples, regardless of whether there are multiple colour components in a byte or whether
a single colour component spans multiple bytes.

NOTE 2 This can yield significantly better speed at the cost of somewhat worse compression.

7.4.5 RunLengthDecode Filter

The RunLengthDecode filter decodes data that has been encoded in a simple byte-oriented format based on
run length. The encoded data shall be a sequence of runs, where each run shall consist of a length byte
followed by 1 to 128 bytes of data. If the length byte is in the range 0 to 127, the following length + 1 (1 to 128)
bytes shall be copied literally during decompression. If length is in the range 129 to 255, the following single
byte shall be copied 257 - length (2 to 128) times during decompression. A length value of 128 shall denote
EOD.

o Adobe Systems Incorporated 2008 — All rights reserved 29

PDF 32000-1:2008

NOTE The compression achieved by run-length encoding depends on the input data. In the best case (all zeros), a
compression of approximately 64:1 is achieved for long files. The worst case (the hexadecimal sequence 00
alternating with FF) results in an expansion of 127:128.

7.4.6 CCITTFaxDecode Filter

The CCITTFaxDecode filter decodes image data that has been encoded using either Group 3 or Group 4
CCITT facsimile (fax) encoding.

NOTE 1 CCITT encoding is designed to achieve efficient compression of monochrome (1 bit per pixel) image data at
relatively low resolutions, and so is useful only for bitmap image data, not for colour images, grayscale images,
or general data.

NOTE 2 The CCITT encoding standard is defined by the International Telecommunications Union (ITU), formerly known
as the Comité Consultatif International Téléphonique et Télégraphique (International Coordinating Committee
for Telephony and Telegraphy). The encoding algorithm is not described in detail in this standard but can be
found in ITU Recommendations T.4 and T.6 (see the Bibliography). For historical reasons, we refer to these
documents as the CCITT standard.

CCITT encoding is bit-oriented, not byte-oriented. Therefore, in principle, encoded or decoded data need not
end at a byte boundary. This problem shall be dealt with in the following ways:

e Unencoded data shall be treated as complete scan lines, with unused bits inserted at the end of each scan
line to fill out the last byte. This approach is compatible with the PDF convention for sampled image data.

e Encoded data shall ordinarily be treated as a continuous, unbroken bit stream. The EncodedByteAlign
parameter (described in Table 11) may be used to cause each encoded scan line to be filled to a byte
boundary.

NOTE 3 Although this is not prescribed by the CCITT standard and fax machines never do this, some software
packages find it convenient to encode data this way.

*« When a filter reaches EOD, it shall always skip to the next byte boundary following the encoded data.

The filter shall not perform any error correction or resynchronization, except as noted for the
DamagedRowsBeforeError parameter in Table 11.

Table 11 lists the optional parameters that may be used to control the decoding. Except where noted otherwise,
all values supplied to the decoding filter by any of these parameters shall match those used when the data was
encoded.

Table 11 — Optional parameters for the CCITTFaxDecode filter

Key Type Value

K integer A code identifying the encoding scheme used:
<0 Pure two-dimensional encoding (Group 4)
=0 Pure one-dimensional encoding (Group 3, 1-D)

>0 Mixed one- and two-dimensional encoding (Group 3,
2-D), in which a line encoded one-dimensionally may
be followed by at most K-1 lines encoded two-
dimensionally

The filter shall distinguish among negative, zero, and positive
values of K to determine how to interpret the encoded data;
however, it shall not distinguish between different positive K
values. Default value: 0.

30 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1

Table 11 — Optional parameters for the CCITTFaxDecode filter (continued)

:2008

Key

Type

Value

EndOfLine

boolean

A flag indicating whether end-of-line bit patterns shall be
present in the encoding. The CCITTFaxDecode filter shall
always accept end-of-line bit patterns. If EndOfLine is true
end-of-line bit patterns shall be present.Default value: false.

EncodedByteAlign

boolean

A flag indicating whether the filter shall expect extra O bits
before each encoded line so that the line begins on a byte
boundary. If true, the filter shall skip over encoded bits to
begin decoding each line at a byte boundary. If false, the filter
shall not expect extra bits in the encoded representation.
Default value: false.

Columns

integer

The width of the image in pixels. If the value is not a multiple
of 8, the filter shall adjust the width of the unencoded image
to the next multiple of 8 so that each line starts on a byte
boundary. Default value: 1728.

Rows

integer

The height of the image in scan lines. If the value is 0 or
absent, the image’s height is not predetermined, and the
encoded data shall be terminated by an end-of-block bit
pattern or by the end of the filter’s data. Default value: 0.

EndOfBlock

boolean

A flag indicating whether the filter shall expect the encoded
data to be terminated by an end-of-block pattern, overriding
the Rows parameter. If false, the filter shall stop when it has
decoded the number of lines indicated by Rows or when its
data has been exhausted, whichever occurs first. The end-of-
block pattern shall be the CCITT end-of-facsimile-block
(EOFB) or return-to-control (RTC) appropriate for the K
parameter. Default value: true.

Blackls1

boolean

A flag indicating whether 1 bits shall be interpreted as black
pixels and O bits as white pixels, the reverse of the normal
PDF convention for image data. Default value: false.

DamagedRowsBeforeError

integer

The number of damaged rows of data that shall be tolerated
before an error occurs. This entry shall apply only if
EndOfLine is true and K is non-negative. Tolerating a
damaged row shall mean locating its end in the encoded data
by searching for an EndOfLine pattern and then substituting
decoded data from the previous row if the previous row was
not damaged, or a white scan line if the previous row was
also damaged. Default value: 0.

NOTE 4 The compression achieved using CCITT encoding depends on the data, as well as on the value of various
optional parameters. For Group 3 one-dimensional encoding, in the best case (all zeros), each scan line
compresses to 4 bytes, and the compression factor depends on the length of a scan line. If the scan line is 300
bytes long, a compression ratio of approximately 75:1 is achieved. The worst case, an image of alternating
ones and zeros, produces an expansion of 2:9.

7.4.7 JBIG2Decode Filter

The JBIG2Decode filter (PDF 1.4) decodes monochrome (1 bit per pixel) image data that has been encoded

using JBIG2 encoding.

NOTE 1 JBIG stands for the Joint Bi-Level Image Experts Group, a group within the International Organization for
Standardization (ISO) that developed the format. JBIG2 is the second version of a standard originally released

as JBIG1.

JBIG2 encoding, which provides for both lossy and lossless compression, is useful only for monochrome
images, not for colour images, grayscale images, or general data. The algorithms used by the encoder, and

o Adobe Systems Incorporated 2008 — All rights reserved

31

http://www.jpeg.org
http://www.jpeg.org
http://www.jpeg.org

PDF 32000-1:2008

the details of the format, are not described here. See ISO/IEC 11544 published standard for the current JBIG2
specification. Additional information can be found through the Web site for the JBIG and JPEG (Joint
Photographic Experts Group) committees at <http://www.jpeg.org>.

In general, JBIG2 provides considerably better compression than the existing CCITT standard (discussed in
7.4.6, "CCITTFaxDecode Filter"). The compression it achieves depends strongly on the nature of the image.
Images of pages containing text in any language compress particularly well, with typical compression ratios of
20:1 to 50:1 for a page full of text.

The JBIG2 encoder shall build a table of unique symbol bitmaps found in the image, and other symbols found
later in the image shall be matched against the table. Matching symbols shall be replaced by an index into the
table, and symbols that fail to match shall be added to the table. The table itself shall be compressed using
other means.

NOTE 2 This method results in high compression ratios for documents in which the same symbol is repeated often, as

is typical for images created by scanning text pages. It also results in high compression of white space in the
image, which does not need to be encoded because it contains no symbols.

While best compression is achieved for images of text, the JBIG2 standard also includes algorithms for
compressing regions of an image that contain dithered halftone images (for example, photographs).

The JBIG2 compression method may also be used for encoding multiple images into a single JBIG2 bit stream.

NOTE 3 Typically, these images are scanned pages of a multiple-page document. Since a single table of symbol

bitmaps is used to match symbols across multiple pages, this type of encoding can result in higher
compression ratios than if each of the pages had been individually encoded using JBIG2.

In general, an image may be specified in PDF as either an image XObject or an inline image (as described in
8.9, "Images"); however, the JBIG2Decode filter shall not be used with inline images.

This filter addresses both single-page and multiple-page JBIG2 bit streams by representing each JBIG2 page
as a PDF image, as follows:

32

The filter shall use the embedded file organization of JBIG2. (The details of this and the other types of file
organization are provided in an annex of the 1ISO specification.) The optional 2-byte combination (marker)
mentioned in the specification shall not be used in PDF. JBIG2 bit streams in random-access organization
should be converted to the embedded file organization. Bit streams in sequential organization need no
reorganization, except for the mappings described below.

The JBIG2 file header, end-of-page segments, and end-of-file segment shall not be used in PDF. These
should be removed before the PDF objects described below are created.

The image XObject to which the JBIG2Decode filter is applied shall contain all segments that are
associated with the JBIG2 page represented by that image; that is, all segments whose segment page
association field contains the page number of the JBIG2 page represented by the image. In the image
XObject, however, the segment’s page number should always be 1; that is, when each such segment is
written to the XObject, the value of its segment page association field should be set to 1.

If the bit stream contains global segments (segments whose segment page association field contains 0),
these segments shall be placed in a separate PDF stream, and the filter parameter listed in Table 12
should refer to that stream. The stream can be shared by multiple image XObjects whose JBIG2
encodings use the same global segments.

Table 12 — Optional parameter for the JBIG2Decode filter

Key Type Value

JBIG2Globals stream A stream containing the JBIG2 global (page 0) segments. Global
segments shall be placed in this stream even if only a single JBIG2
image XObject refers to it.

o Adobe Systems Incorporated 2008 — All rights reserved

http://www.jpeg.org

PDF 32000-1:2008

EXAMPLE 1 The following shows an image that was compressed using the JBIG2 compression method and then
encoded in ASCII hexadecimal representation. Since the JBIG2 bit stream contains global segments,
these segments are placed in a separate PDF stream, as indicated by the JBIG2Globals filter parameter.

5 0 obj
<< [Type /XObject
/Subtype /Image
/Width 52
/Height 66
/ColorSpace /DeviceGray
/BitsPerComponent 1
/Length 224
[Filter [/ASCIlIHexDecode /JBIG2Decode]
/DecodeParms [null << /JBIG2GIlobals 6 0 R >>]
>>
stream
000000013000010000001300000034000000420000000000
00000040000000000002062000010000001e000000340000
004200000000000000000200100000000231db51ce51ffac>
endstream
endobj

6 0 obj

<< /Length 126

[/Filter /ASCIlIHexDecode

>>
stream
0000000000010000000032000003fffdff02fefefe000000
01000000012ae225aea9a5a538b4d9999c5c8e56ef0f872
7f2b53d4e37ef795cc5506dffac>
endstream
endobj

The JBIG2 bit stream for this example is as follows:

EXAMPLE 2 97 4A 42 32 0D OA 1A OA 01 00 00 00 01 00 00 00 0O 00 01 00 00 00 00 32
00 00 03 FF FD FF 02 FE FE FE 00 00 00 01 00 00 00 01 2A E2 25 AE A9 A5
A5 38 B4 D9 99 9C 5C 8E 56 EF OF 87 27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D
FF AC 00 00 00 01 30 00 01 00 OO 00 13 00 OO0 00 34 00 00 OO0 42 00 00 00
00 00 00 00 00 40 00 OO0 OO OO OO 02 06 20 00 01 OO OO OO 1E 00 00 00 34
00 00 00 42 00 00 OO OO OO OO OO OO 02 OO 10 OO 0O 00 02 31 DB 51 CE 51
FF AC 00 00 00 03 31 00 01 00 OO 00O OO0 00O OO OO 04 33 01 00 OO 00 OO

This bit stream is made up of the following parts (in the order listed):
a) The JBIG2 file header
97 4A 42 32 0D OA 1A OA 01 00 00 00 01

Since the JBIG2 file header shall not used in PDF, this header is not placed in the JBIG2 stream object and
is discarded.

b) The first IBIG2 segment (segment 0)—in this case, the symbol dictionary segment
00 00 00 00 00 01 00 00 00 00 32 00 00 03 FF FD FF 02 FE FE FE 00 00 00

01 00 00 00 01 2A E2 25 AE A9 A5 A5 38 B4 D9 99 9C 5C 8E 56 EF OF 87
27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D FF AC

This is a global segment (segment page association = 0) and so shall be placed in the JBIG2Globals
stream.

o Adobe Systems Incorporated 2008 — All rights reserved 33

PDF 32000-1:2008

¢) The page information segment

00 00 00 01 30 00 01 OO 00 00 13 00 00 OO 34 00 00 OO 42 00 00 OO 0O
00 00 00 00 40 00 00

and the immediate text region segment

00 00 00 02 06 20 00 01 00 00 OO 1E OO 00 OO 34 00 00 OO 42 00 00 0O
00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51 FF AC

These two segments constitute the contents of the JBIG2 page and shall be placed in the PDF XObject
representing this image.

d) The end-of-page segment
00 00 00 03 31 00 01 00 0O 00 00
and the end-of-file segment
00 00 00 04 33 01 00 00 00 0O
Since these segments shall not be used in PDF, they are discarded.

The resulting PDF image object, then, contains the page information segment and the immediate text region
segment and refers to a JBIG2Globals stream that contains the symbol dictionary segment.

7.4.8 DCTDecode Filter

The DCTDecode filter decodes grayscale or colour image data that has been encoded in the JPEG baseline
format. See Adobe Technical Note #5116 for additional information about the use of JPEG “markers.”

NOTE 1 JPEG stands for the Joint Photographic Experts Group, a group within the International Organization for
Standardization that developed the format; DCT stands for discrete cosine transform, the primary technique
used in the encoding.

JPEG encoding is a lossy compression method, designed specifically for compression of sampled continuous-
tone images and not for general data compression.

Data to be encoded using JPEG shall consist of a stream of image samples, each consisting of one, two, three,
or four colour components. The colour component values for a particular sample shall appear consecutively.
Each component value shall occupy a byte.

During encoding, several parameters shall control the algorithm and the information loss. The values of these
parameters, which include the dimensions of the image and the number of components per sample, are entirely
under the control of the encoder and shall be stored in the encoded data. DCTDecode may obtain the
parameter values it requires directly from the encoded data. However, in one instance, the parameter need not
be present in the encoded data but shall be specified in the filter parameter dictionary; see Table 13.

NOTE 2 The details of the encoding algorithm are not presented here but are in the ISO standard and in JPEG: Sitill
Image Data Compression Standard, by Pennebaker and Mitchell (see the Bibliography). Briefly, the JPEG
algorithm breaks an image up into blocks that are 8 samples wide by 8 samples high. Each colour component
in an image is treated separately. A two-dimensional DCT is performed on each block. This operation produces
64 coefficients, which are then quantized. Each coefficient may be quantized with a different step size. It is this
quantization that results in the loss of information in the JPEG algorithm. The quantized coefficients are then
compressed.

34 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 13 — Optional parameter for the DCTDecode filter

Key Type Value

ColorTransform integer (Optional) A code specifying the transformation that shall be
performed on the sample values:

0 No transformation.

1 If the image has three colour components, RGB values shall be
transformed to YUV before encoding and from YUV to RGB after
decoding. If the image has four components, CMYK values shall
be transformed to YUVK before encoding and from YUVK to
CMYK after decoding. This option shall be ignored if the image has
one or two colour components.

If the encoding algorithm has inserted the Adobe-defined marker?
code in the encoded data indicating the ColorTransform value, then
the colours shall be transformed, or not, after the DCT decoding has
been performed according to the value provided in the encoded data
and the value of this dictionary entry shall be ignored. If the Adobe-
defined marker code in the encoded data indicating the
ColorTransform value is not present then the value specified in this
dictionary entry will be used. If the Adobe-defined marker code in the
encoded data indicating the ColorTransform value is not present and
this dictionary entry is not present in the filter dictionary then the
default value of ColorTransform shall be 1 if the image has three
components and 0 otherwise.

8 parameters that control the decoding process as well as other metadata is embedded within the encoded data

stream using a notation referred to as “markers”. When it defined the use of JPEG images within PostScript data
streams, Adobe System Incorporated defined a particular set of rules pertaining to which markers are to be
recognized, which are to be ignored and which are considered errors. A specific Adobe-defined marker was also
introduced. The exact rules for producing and consuming DCT encoded data within PostScript are provide in
Adobe Technical Note #5116 (reference). PDF DCT Encoding shall exactly follow those rules established by
Adobe for PostScript.

NOTE 3 The encoding algorithm can reduce the information loss by making the step size in the quantization smaller at
the expense of reducing the amount of compression achieved by the algorithm. The compression achieved by
the JPEG algorithm depends on the image being compressed and the amount of loss that is acceptable. In
general, a compression of 15:1 can be achieved without perceptible loss of information, and 30:1
compression causes little impairment of the image.

NOTE 4 Better compression is often possible for colour spaces that treat luminance and chrominance separately than
for those that do not. The RGB-to-YUV conversion provided by the filters is one attempt to separate luminance
and chrominance; it conforms to CCIR recommendation 601-1. Other colour spaces, such as the CIE 1976
L*a*b* space, may also achieve this objective. The chrominance components can then be compressed more
than the luminance by using coarser sampling or quantization, with no degradation in quality.

In addition to the baseline JPEG format, beginning with PDF 1.3, the DCTDecode filter shall support the
progressive JPEG extension. This extension does not add any entries to the DCTDecode parameter
dictionary; the distinction between baseline and progressive JPEG shall be represented in the encoded data.

NOTE 5 There is no benefit to using progressive JPEG for stream data that is embedded in a PDF file. Decoding
progressive JPEG is slower and consumes more memory than baseline JPEG. The purpose of this feature is
to enable a stream to refer to an external file whose data happens to be already encoded in progressive JPEG.

7.4.9 JPXDecode Filter

The JPXDecode filter (PDF 1.5) decodes data that has been encoded using the JPEG2000 compression
method, an ISO standard for the compression and packaging of image data.

NOTE 1 JPEG2000 defines a wavelet-based method for image compression that gives somewhat better size reduction
than other methods such as regular JPEG or CCITT. Although the filter can reproduce samples that are
losslessly compressed.

o Adobe Systems Incorporated 2008 — All rights reserved 35

PDF 32000-1:2008

This filter shall only be applied to image XObjects, and not to inline images (see 8.9, "Images"). It is suitable
both for images that have a single colour component and for those that have multiple colour components. The
colour components in an image may have different numbers of bits per sample. Any value from 1 to 38 shall be
allowed.

NOTE 2 From a single JPEG2000 data stream, multiple versions of an image may be decoded. These different
versions form progressions along four degrees of freedom: sampling resolution, colour depth, band, and
location. For example, with a resolution progression, a thumbnail version of the image may be decoded from
the data, followed by a sequence of other versions of the image, each with approximately four times as many
samples (twice the width times twice the height) as the previous one. The last version is the full-resolution
image.

NOTE 3 Viewing and printing applications may gain performance benefits by using the resolution progression. If the
full-resolution image is densely sampled, the application may be able to select and decode only the data
making up a lower-resolution version, thereby spending less time decoding. Fewer bytes need be processed, a
particular benefit when viewing files over the Web. The tiling structure of the image may also provide benefits if
only certain areas of an image need to be displayed or printed.

NOTE 4 Information on these progressions is encoded in the data; no decode parameters are needed to describe them.
The decoder deals with any progressions it encounters to deliver the correct image data. Progressions that are
of no interest may simply have performance consequences.

The JPEG2000 specifications define two widely used formats, JP2 and JPX, for packaging the compressed
image data. JP2 is a subset of JPX. These packagings contain all the information needed to properly interpret
the image data, including the colour space, bits per component, and image dimensions. In other words, they
are complete descriptions of images (as opposed to image data that require outside parameters for correct
interpretation). The JPXDecode filter shall expect to read a full JPX file structure—either internal to the PDF file
or as an external file.

NOTE 5 To promote interoperability, the specifications define a subset of JPX called JPX baseline (of which JP2 is also
a subset). The complete details of the baseline set of JPX features are contained in ISO/IEC 15444-2,
Information Technology—JPEG 2000 Image Coding System: Extensions (see the Bibliography). See also
<http://www.jpeg.org/jpeg2000/>.

Data used in PDF image XObjects shall be limited to the JPX baseline set of features, except for enumerated
colour space 19 (CIEJab). In addition, enumerated colour space 12 (CMYK), which is part of JPX but not JPX
baseline, shall be supported in a PDF.

A JPX file describes a collection of channels that are present in the image data. A channel may have one of
three types:

« An ordinary channel contains values that, when decoded, shall become samples for a specified colour
component.

« An opacity channel provides samples that shall be interpreted as raw opacity information.

* A premultiplied opacity channel shall provide samples that have been multiplied into the colour samples of
those channels with which it is associated.

Opacity and premultiplied opacity channels shall be associated with specific colour channels. There shall not
be more than one opacity channel (of either type) associated with a given colour channel.

EXAMPLE It is possible for one opacity channel to apply to the red samples and another to apply to the green and
blue colour channels of an RGB image.

NOTE 6 The method by which the opacity information is to be used is explicitly not specified, although one possible
method shows a normal blending mode.

In addition to using opacity channels for describing transparency, JPX files also have the ability to specify

chroma-key transparency. A single colour may be specified by giving an array of values, one value for each
colour channel. Any image location that matches this colour shall be considered to be completely transparent.

36 o Adobe Systems Incorporated 2008 — All rights reserved

http://www.jpeg.org/jpeg2000/
http://www.jpeg.org/jpeg2000/

PDF 32000-1:2008

Images in JPX files may have one of the following colour spaces:

» A predefined colour space, chosen from a list of enumerated colour spaces. (Two of these are actually
families of spaces and parameters are included.)

» Arrestricted ICC profile. These are the only sorts of ICC profiles that are allowed in JP2 files.
e Aninput ICC profile of any sort defined by ICC-1.
« Avendor-defined colour space.

More than one colour space may be specified for an image, with each space being tagged with a precedence
and an approximation value that indicates how well it represents the preferred colour space. In addition, the
image’s colour space may serve as the foundation for a palette of colours that are selected using samples
coming from the image’s data channels: the equivalent of an Indexed colour space in PDF.

There are other features in the JPX format beyond describing a simple image. These include provisions for
describing layering and giving instructions on composition, specifying simple animation, and including generic
XML metadata (along with JPEG2000-specific schemas for such data). Relevant metadata should be
replicated in the image dictionary’s Metadata stream in XMP format (see 14.3.2, "Metadata Streams").

When using the JPXDecode filter with image XObjects, the following changes to and constraints on some
entries in the image dictionary shall apply (see 8.9.5, "Image Dictionaries" for details on these entries):

* Width and Height shall match the corresponding width and height values in the JPEG2000 data.

» ColorSpace shall be optional since JPEG2000 data contain colour space specifications. If present, it shall
determine how the image samples are interpreted, and the colour space specifications in the JPEG2000
data shall be ignored. The number of colour channels in the JPEG2000 data shall match the number of
components in the colour space; a conforming writer shall ensure that the samples are consistent with the
colour space used.

e Any colour space other than Pattern may be specified. If an Indexed colour space is used, it shall be
subject to the PDF limit of 256 colours. If the colour space does not match one of JPX’s enumerated colour
spaces (for example, if it has two colour components or more than four), it should be specified as a vendor
colour space in the JPX data.

» If ColorSpace is not present in the image dictionary, the colour space information in the JPEG2000 data
shall be used. A JPEG2000 image within a PDF shall have one of: the baseline JPX colorspaces; or
enumerated colorspace 19 (CIEJab) or enumerated colorspace 12 (CMYK); or at least one ICC profile that
is valid within PDF. Conforming PDF readers shall support the JPX baseline set of enumerated colour
spaces; they shall also be responsible for dealing with the interaction between the colour spaces and the
bit depth of samples.

e If multiple colour space specifications are given in the JPEG2000 data, a conforming reader should
attempt to use the one with the highest precedence and best approximation value. If the colour space is
given by an unsupported ICC profile, the next lower colour space, in terms of precedence and
approximation value, shall be used. If no supported colour space is found, the colour space used shall be
DeviceGray, DeviceRGB, or DeviceCMYK, depending on the whether the number of channels in the
JPEG2000 data is 1,3, or 4.

 SMaskInData specifies whether soft-mask information packaged with the image samples shall be used
(see 11.6.5.3, "Soft-Mask Images"); if it is, the SMask entry shall not be present. If SMaskInData is
nonzero, there shall be only one opacity channel in the JPEG2000 data and it shall apply to all colour
channels.

« Decode shall be ignored, except in the case where the image is treated as a mask; that is, when

ImageMask is true. In this case, the JPEG2000 data shall provide a single colour channel with 1-bit
samples.

o Adobe Systems Incorporated 2008 — All rights reserved 37

PDF 32000-1:2008

7.4.10 Crypt Filter

The Crypt filter (PDF 1.5) allows the document-level security handler (see 7.6, "Encryption") to determine
which algorithms should be used to decrypt the input data. The Name parameter in the decode parameters
dictionary for this filter (see Table 14) shall specify which of the named crypt filters in the document (see 7.6.5,
"Crypt Filters") shall be used. The Crypt filter shall be the first filter in the Filter array entry.

Table 14 — Optional parameters for Crypt filters

Key Type Value

Type name (Optional) If present, shall be CryptFilterDecodeParms for a Crypt
filter decode parameter dictionary.

Name name (Optional) The name of the crypt filter that shall be used to decrypt this
stream. The name shall correspond to an entry in the CF entry of the
encryption dictionary (see Table 20) or one of the standard crypt filters
(see Table 26).

Default value: Identity.

In addition, the decode parameters dictionary may include entries that are private to the security handler.
Security handlers may use information from both the crypt filter decode parameters dictionary and the crypt
filter dictionaries (see Table 25) when decrypting data or providing a key to decrypt data.

NOTE When adding private data to the decode parameters dictionary, security handlers should nhame these entries in
conformance with the PDF name registry (see Annex E).

If a stream specifies a crypt filter, then the security handler does not apply "Algorithm 1: Encryption of data
using the RC4 or AES algorithms" in 7.6.2, "General Encryption Algorithm," to the key prior to decrypting the
stream. Instead, the security handler shall decrypt the stream using the key as is. Sub-clause 7.4, "Filters,"
explains how a stream specifies filters.

7.5 File Structure

75.1 General

This sub-clause describes how objects are organized in a PDF file for efficient random access and incremental
update. A basic conforming PDF file shall be constructed of following four elements (see Figure 2):

* A one-line header identifying the version of the PDF specification to which the file conforms
* A body containing the objects that make up the document contained in the file
e Across-reference table containing information about the indirect objects in the file

e Atrailer giving the location of the cross-reference table and of certain special objects within the body of the
file

This initial structure may be modified by later updates, which append additional elements to the end of the file;
see 7.5.6, "Incremental Updates," for detalils.

38 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Header

Body

Cross-reference
table

Trailer

Figure 2 — Initial structure of a PDF file

As a matter of convention, the tokens in a PDF file are arranged into lines; see 7.2, "Lexical Conventions."
Each line shall be terminated by an end-of-line (EOL) marker, which may be a CARRIAGE RETURN (0Dh), a
LINE FEED (OAh), or both. PDF files with binary data may have arbitrarily long lines.

NOTE To increase compatibility with compliant programs that process PDF files, lines that are not part of stream
object data are limited to no more than 255 characters, with one exception. Beginning with PDF 1.3, the
Contents string of a signature dictionary (see 12.8, "Digital Signatures”) is not subject to the restriction on line
length.

The rules described here are sufficient to produce a basic conforming PDF file. However, additional rules apply
to organizing a PDF file to enable efficient incremental access to a document’s components in a network
environment. This form of organization, called Linearized PDF, is described in Annex F.

7.5.2 File Header

The first line of a PDF file shall be a header consisting of the 5 characters %PDF- followed by a version
number of the form 1.N, where N is a digit between 0 and 7.

A conforming reader shall accept files with any of the following headers:

%PDF-1.0
%PDF-1.1
%PDF-1.2
%PDF-1.3
%PDF-1.4
%PDF-1.5
%PDF-1.6
%PDF-1.7

Beginning with PDF 1.4, the Version entry in the document’s catalog dictionary (located via the Root entry in

the file’s trailer, as described in 7.5.5, "File Trailer"), if present, shall be used instead of the version specified in
the Header.

o Adobe Systems Incorporated 2008 — All rights reserved 39

PDF 32000-1:2008

NOTE This allows a conforming writer to update the version using an incremental update (see 7.5.6, "Incremental
Updates").

Under some conditions, a conforming reader may be able to process PDF files conforming to a later version
than it was designed to accept. New PDF features are often introduced in such a way that they can safely be
ignored by a conforming reader that does not understand them (see I.2, "PDF Version Numbers").

This part of ISO 32000 defines the Extensions entry in the document’s catalog dictionary. If present, it shall
identify any developer-defined extensions that are contained in this PDF file. See 7.12, “Extensions Dictionary”.

If a PDF file contains binary data, as most do (see 7.2, "Lexical Conventions"), the header line shall be
immediately followed by a comment line containing at least four binary characters—that is, characters whose
codes are 128 or greater. This ensures proper behaviour of file transfer applications that inspect data near the
beginning of a file to determine whether to treat the file’s contents as text or as binary.

7.5.3 File Body

The body of a PDF file shall consist of a sequence of indirect objects representing the contents of a document.
The objects, which are of the basic types described in 7.3, "Objects," represent components of the document
such as fonts, pages, and sampled images. Beginning with PDF 1.5, the body can also contain object streams,
each of which contains a sequence of indirect objects; see 7.5.7, "Object Streams."

7.5.4 Cross-Reference Table

The cross-reference table contains information that permits random access to indirect objects within the file so
that the entire file need not be read to locate any particular object. The table shall contain a one-line entry for
each indirect object, specifying the byte offset of that object within the body of the file. (Beginning with PDF 1.5,
some or all of the cross-reference information may alternatively be contained in cross-reference streams; see
7.5.8, "Cross-Reference Streams.")

NOTE 1 The cross-reference table is the only part of a PDF file with a fixed format, which permits entries in the table to
be accessed randomly.

The table comprises one or more cross-reference sections. Initially, the entire table consists of a single section
(or two sections if the file is linearized; see Annex F). One additional section shall be added each time the file is
incrementally updated (see 7.5.6, "Incremental Updates").

Each cross-reference section shall begin with a line containing the keyword xref. Following this line shall be
one or more cross-reference subsections, which may appear in any order. For a file that has never been
incrementally updated, the cross-reference section shall contain only one subsection, whose object humbering
begins at 0.

NOTE 2 The subsection structure is useful for incremental updates, since it allows a new cross-reference section to be
added to the PDF file, containing entries only for objects that have been added or deleted.

Each cross-reference subsection shall contain entries for a contiguous range of object numbers. The
subsection shall begin with a line containing two numbers separated by a SPACE (20h), denoting the object
number of the first object in this subsection and the number of entries in the subsection.

EXAMPLE 1 The following line introduces a subsection containing five objects numbered consecutively from 28 to 32.

28 5
A given object number shall not have an entry in more than one subsection within a single section.
Following this line are the cross-reference entries themselves, one per line. Each entry shall be exactly 20

bytes long, including the end-of-line marker. There are two kinds of cross-reference entries: one for objects that
are in use and another for objects that have been deleted and therefore are free. Both types of entries have

40 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

similar basic formats, distinguished by the keyword n (for an in-use entry) or f (for a free entry). The format of
an in-use entry shall be:

nnnnnnnnnn ggggg n eol
where:
nnnnnnnnnn shall be a 10-digit byte offset in the decoded stream
ggggg shall be a 5-digit generation number
n shall be a keyword identifying this as an in-use entry
eol shall be a 2-character end-of-line sequence

The byte offset in the decoded stream shall be a 10-digit number, padded with leading zeros if nhecessary,
giving the number of bytes from the beginning of the file to the beginning of the object. It shall be separated
from the generation number by a single SPACE. The generation number shall be a 5-digit number, also padded
with leading zeros if necessary. Following the generation number shall be a single SPACE, the keyword n, and
a 2-character end-of-line sequence consisting of one of the following: SP CR, SP LF, or CR LF. Thus, the
overall length of the entry shall always be exactly 20 bytes.

The cross-reference entry for a free object has essentially the same format, except that the keyword shall be f
instead of n and the interpretation of the first item is different:

nnnnnnnnnn ggggg f eol
where:
nnnnnnnnnn shall be the 10-digit object number of the next free object
0gggg shall be a 5-digit generation number
f shall be a keyword identifying this as a free entry
eol shall be a 2-character end-of-line sequence

There are two ways an entry may be a member of the free entries list. Using the basic mechanism the free
entries in the cross-reference table may form a linked list, with each free entry containing the object number of
the next. The first entry in the table (object number 0) shall always be free and shall have a generation number
of 65,535; it is shall be the head of the linked list of free objects. The last free entry (the tail of the linked list)
links back to object number 0. Using the second mechanism, the table may contain other free entries that link
back to object number 0 and have a generation number of 65,535, even though these entries are not in the
linked list itself.

Except for object number 0, all objects in the cross-reference table shall initially have generation numbers of 0.
When an indirect object is deleted, its cross-reference entry shall be marked free and it shall be added to the
linked list of free entries. The entry’s generation number shall be incremented by 1 to indicate the generation
number to be used the next time an object with that object number is created. Thus, each time the entry is
reused, it is given a new generation number. The maximum generation number is 65,535; when a cross-
reference entry reaches this value, it shall never be reused.

The cross-reference table (comprising the original cross-reference section and all update sections) shall
contain one entry for each object number from 0 to the maximum object number defined in the file, even if one
or more of the object numbers in this range do not actually occur in the file.

EXAMPLE 2 The following shows a cross-reference section consisting of a single subsection with six entries: four that
are in use (objects number 1, 2, 4, and 5) and two that are free (objects number 0 and 3). Object number
3 has been deleted, and the next object created with that object number is given a generation number of 7.

o Adobe Systems Incorporated 2008 — All rights reserved 41

PDF 32000-1:2008

xref

06

0000000003 65535 f
0000000017 00000 n
0000000081 00000 n
0000000000 00007 f
0000000331 00000 n
0000000409 00000 n

EXAMPLE 3 The following shows a cross-reference section with four subsections, containing a total of five entries. The
first subsection contains one entry, for object number 0, which is free. The second subsection contains
one entry, for object number 3, which is in use. The third subsection contains two entries, for objects
number 23 and 24, both of which are in use. Object number 23 has been reused, as can be seen from the
fact that it has a generation number of 2. The fourth subsection contains one entry, for object number 30,
which is in use.

xref
01
0000000000 65535 f
31
0000025325 00000 n
23 2
0000025518 00002 n
0000025635 00000 n
30 1
0000025777 00000 n

See H.7, "Updating Example”, for a more extensive example of the structure of a PDF file that has been
updated several times.

7.5.5 File Trailer

The trailer of a PDF file enables a conforming reader to quickly find the cross-reference table and certain
special objects. Conforming readers should read a PDF file from its end. The last line of the file shall contain
only the end-of-file marker, %%EOF. The two preceding lines shall contain, one per line and in order, the
keyword startxref and the byte offset in the decoded stream from the beginning of the file to the beginning of
the xref keyword in the last cross-reference section. The startxref line shall be preceded by the trailer
dictionary, consisting of the keyword trailer followed by a series of key-value pairs enclosed in double angle
brackets (<<...>>) (using LESS-THAN SIGNs (3Ch) and GREATER-THAN SIGNs (3Eh)). Thus, the trailer has
the following overall structure:

trailer
<< key; valueq

key, value,

key, value,
>>
startxref
Byte offset_of last cross-reference_section
%%EOF

42 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 15 lists the contents of the trailer dictionary.

Table 15 — Entries in the file trailer dictionary

Key

Type

Value

Size

integer

(Required; shall not be an indirect reference) The total number of entries in
the file’s cross-reference table, as defined by the combination of the original

than the highest object number defined in the file.

value shall be ignored and defined to be missing by a conforming reader.

section and all update sections. Equivalently, this value shall be 1 greater

Any object in a cross-reference section whose number is greater than this

Prev

integer

(Present only if the file has more than one cross-reference section; shall be
an indirect reference) The byte offset in the decoded stream from the
beginning of the file to the beginning of the previous cross-reference section.

Root

dictionary

(Required; shall be an indirect reference) The catalog dictionary for the PDF
document contained in the file (see 7.7.2, "Document Catalog").

Encrypt

dictionary

(Required if document is encrypted; PDF 1.1) The document’s encryption
dictionary (see 7.6, "Encryption™).

Info

dictionary

(Optional; shall be an indirect reference) The document’s information
dictionary (see 14.3.3, "Document Information Dictionary™).

ID

array

(Required if an Encrypt entry is present; optional otherwise; PDF 1.1) An
array of two byte-strings constituting a file identifier (see 14.4, "File
Identifiers") for the file. If there is an Encrypt entry this array and the two
byte-strings shall be direct objects and shall be unencrypted.

NOTE 1 Because the ID entries are not encrypted it is possible to check
the ID key to assure that the correct file is being accessed
without decrypting the file. The restrictions that the string be a
direct object and not be encrypted assure that this is possible.

NOTE 2 Although this entry is optional, its absence might prevent the file
from functioning in some workflows that depend on files being
uniquely identified.

NOTE 3 The values of the ID strings are used as input to the encryption
algorithm. If these strings were indirect, or if the ID array were
indirect, these strings would be encrypted when written. This
would result in a circular condition for a reader: the ID strings
must be decrypted in order to use them to decrypt strings,
including the ID strings themselves. The preceding restriction
prevents this circular condition.

NOTE Table 19 defines an additional entry, XRefStm, that appears only in the trailer of hybrid-reference files,
described in 7.5.8.4, "Compatibility with Applications That Do Not Support Compressed Reference Streams."

EXAMPLE This example shows a trailer for a file that has never been updated (as indicated by the absence of a Prev
entry in the trailer dictionary).

trailer
<< /Size 22
/Root 20R
/Info 10R
/ID[<81lbl4aafa313db63dbd6fo81e49f94f4>
<81bl4aafa313db63dbd6f981e49f94f4 >
|
>>
startxref
18799
%%EOF

o Adobe Systems Incorporated 2008 — All rights reserved

43

PDF 32000-1:2008

7.5.6 Incremental Updates

The contents of a PDF file can be updated incrementally without rewriting the entire file. When updating a PDF
file incrementally, changes shall be appended to the end of the file, leaving its original contents intact.

NOTE 1 The main advantage to updating a file in this way is that small changes to a large document can be saved
quickly. There are additional advantages:

In certain contexts, such as when editing a document across an HTTP connection or using OLE embedding (a
Windows-specific technology), a conforming writer cannot overwrite the contents of the original file.
Incremental updates may be used to save changes to documents in these contexts.

NOTE 2 The resulting file has the structure shown in Figure 3. A complete example of an updated file is shown in H.7,
"Updating Example".

A cross-reference section for an incremental update shall contain entries only for objects that have been
changed, replaced, or deleted. Deleted objects shall be left unchanged in the file, but shall be marked as
deleted by means of their cross-reference entries. The added trailer shall contain all the entries except the Prev
entry (if present) from the previous trailer, whether modified or not. In addition, the added trailer dictionary shall
contain a Prev entry giving the location of the previous cross-reference section (see Table 15). Each trailer
shall be terminated by its own end-of-file (%%EOF) marker.

NOTE 3 As shown in Figure 3, a file that has been updated several times contains several trailers. Because updates
are appended to PDF files, a file may have several copies of an object with the same object identifier (object
number and generation number).

EXAMPLE Several copies of an object can occur if a text annotation (see 12.5, "Annotations") is changed several
times and the file is saved between changes. Because the text annotation object is not deleted, it retains
the same object number and generation number as before. The updated copy of the object is included in
the new update section added to the file.

The update’s cross-reference section shall include a byte offset to this new copy of the object, overriding the
old byte offset contained in the original cross-reference section. When a conforming reader reads the file, it
shall build its cross-reference information in such a way that the most recent copy of each object shall be the
one accessed from the file.

In versions of PDF 1.4 or later a conforming writer may use the Version entry in the document’s catalog
dictionary (see 7.7.2, "Document Catalog") to override the version specified in the header. A conforming writer
may also need to update the Extensions dictionary, see 7.12, “Extensions Dictionary”, if the update either
deleted or added developer-defined extensions.

NOTE 4 The version entry enables the version to be altered when performing an incremental update.

44 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Header

Original
body

Original
cross-reference
section

Original trailer

Body update 1

Cross-reference
section 1

Updated trailer 1

N A T
M A)

Body update n

Cross-reference
sectionn

Updated trailer n

Figure 3 — Structure of an updated PDF file

7.5.7 Object Streams

An object stream, is a stream object in which a sequence of indirect objects may be stored, as an alternative to
their being stored at the outermost file level.

NOTE 1 Object streams are first introduced in PDF 1.5. The purpose of object streams is to allow indirect objects other
than streams to be stored more compactly by using the facilities provided by stream compression filters.

NOTE 2 The term “compressed object” is used regardless of whether the stream is actually encoded with a
compression filter.

The following objects shall not be stored in an object stream:

e Stream objects

* Objects with a generation number other than zero

e A document’s encryption dictionary (see 7.6, "Encryption")

« An object representing the value of the Length entry in an object stream dictionary

o Adobe Systems Incorporated 2008 — All rights reserved 45

PDF 32000-1:2008

< Inlinearized files (see Annex F), the document catalog, the linearization dictionary, and page objects shall
not appear in an object stream.

NOTE 3 Indirect references to objects inside object streams use the normal syntax: for example, 14 0 R. Access to
these objects requires a different way of storing cross-reference information; see 7.5.8, "Cross-Reference
Streams.” Use of compressed objects requires a PDF 1.5 conforming reader. However, compressed objects
can be stored in a manner that a PDF 1.4 conforming reader can ignore.

In addition to the regular keys for streams shown in Table 5, the stream dictionary describing an object stream
contains the following entries:

Table 16 — Additional entries specific to an object stream dictionary

key type description

Type name (Required) The type of PDF object that this dictionary describes; shall be
ObjStm for an object stream.

N integer (Required) The number of indirect objects stored in the stream.

First integer (Required) The byte offset in the decoded stream of the first compressed
object.

Extends stream (Optional) A reference to another object stream, of which the current object

stream shall be considered an extension. Both streams are considered part
of a collection of object streams (see below). A given collection consists of a
set of streams whose Extends links form a directed acyclic graph.

A conforming writer determines which objects, if any, to store in object streams.

EXAMPLE 1 It can be useful to store objects having common characteristics together, such as “fonts on page 1,” or
“Comments for draft #3.” These objects are known as a collection.

NOTE 4 To avoid a degradation of performance, such as would occur when downloading and decompressing a large
object stream to access a single compressed object, the number of objects in an individual object stream
should be limited. This may require a group of object streams to be linked as a collection, which can be done
by means of the Extends entry in the object stream dictionary.

NOTE 5 Extends may also be used when a collection is being updated to include new objects. Rather than modifying
the original object stream, which could entail duplicating much of the stream data, the new objects can be
stored in a separate object stream. This is particularly important when adding an update section to a
document.

The stream data in an object stream shall contain the following items:

« N pairs of integers separated by white space, where the first integer in each pair shall represent the object
number of a compressed object and the second integer shall represent the byte offset in the decoded
stream of that object, relative to the first object stored in the object stream, the value of the stream's first
entry. The offsets shall be in increasing order.

NOTE 6 There is no restriction on the order of objects in the object stream; in particular, the objects need not be stored
in object-number order.

e The value of the First entry in the stream dictionary shall be the byte offset in the decoded stream of the
first object.

e The N objects are stored consecutively. Only the object values are stored in the stream; the obj and
endobj keywords shall not be used.

NOTE 7 A compressed dictionary or array may contain indirect references.

An object in an object stream shall not consist solely of an object reference.

46 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

EXAMPLE 2 30R

In an encrypted file (i.e., entire object stream is encrypted), strings occurring anywhere in an object stream
shall not be separately encrypted.

A conforming writer shall store the first object immediately after the last byte offset. A conforming reader shall
rely on the First entry in the stream dictionary to locate the first object.

An object stream itself, like any stream, shall be an indirect object, and therefore, there shall be an entry for it in
a cross-reference table or cross-reference stream (see 7.5.8, "Cross-Reference Streams"), although there
might not be any references to it (of the form 243 0 R).

The generation number of an object stream and of any compressed object shall be zero. If either an object
stream or a compressed object is deleted and the object number is freed, that object number shall be reused
only for an ordinary (uncompressed) object other than an object stream. When new object streams and
compressed objects are created, they shall always be assigned new object numbers, not old ones taken from
the free list.

EXAMPLE 3 The following shows three objects (two fonts and a font descriptor) as they would be represented in a
PDF 1.4 or earlier file, along with a cross-reference table.

11 0 obj
<< [Type /Font
/Subtype /TrueType
...other entries...
[FontDescriptor 12 0 R
>>
endobj

12 0 obj
<< [Type /FontDescriptor
/Ascent 891
...other entries...
/FontFile2 22 0 R
>>
endobj

13 0 obj
<< [Type /Font
/Subtype /TypeO
...other entries...
/ToUnicode 10 0 R
>>
endobj

xref
032
0000000000 65535 f
... cross-reference entries for objects 1 through 10 ...
0000001434 00000 n
0000001735 00000 n
0000002155 00000 n
... cross-reference entries for objects 14 and on ...
trailer

<< /Size 32

/Root ...
>>

NOTE 8 For readability, the object stream has been shown unencoded. In a real PDF 1.5 file, Flate encoding would
typically be used to gain the benefits of compression.

o Adobe Systems Incorporated 2008 — All rights reserved 47

PDF 32000-1:2008

EXAMPLE 4 The following shows the same objects from the previous example stored in an object stream in a PDF 1.5
file, along with a cross-reference stream.

The cross-reference stream (see 7.5.8, "Cross-Reference Streams") contains entries for the fonts (objects
11 and 13) and the descriptor (object 12), which are compressed objects in an object stream. The first
field of these entries is the entry type (2), the second field is the number of the object stream (15), and the
third field is the position within the sequence of objects in the object stream (0, 1, and 2). The cross-
reference stream also contains a type 1 entry for the object stream itself.

15 0 obj % The object stream
<< [Type /ObjStm
/Length 1856
/N3 % The number of objects in the stream
[First 24 % The byte offset in the decoded stream of the first object

% The object numbers and offsets of the objects, relative to the first are shown on the first line of
% the stream (i.e., 11 0 12 547 13 665).
>>
stream
11 0 12 547 13 665
<< [Type /Font
/Subtype /TrueType
...other keys...
/FontDescriptor 12 0 R
>>

<< [Type /FontDescriptor
/Ascent 891
...other keys...
/FontFile2 22 0 R

>>

<< [Type /Font
/Subtype /Type0
...other keys...
/ToUnicode 10 0 R

>>

é"ndstream
endobj

99 0 obj % The cross-reference stream
<< [Type /XRef
/Index [0 32] % This section has one subsection with 32 objects
W [122] % Each entry has 3 fields: 1, 2 and 2 bytes in width,
% respectively
[Filter /ASCIlIHexDecode % For readability in this example
/Size 32

>>
stream
00 0000 FFFF
... cross-references for objects 1 through 10 ...
02 00OF 0000
02 00OF 0001
02 000F 0002
... cross-reference for object 14 ...
01 BA5E 0000
endstream
endobj
startxref

54321
%%EOF

NOTE 9 The number 54321 in Example 4 is the offset for object 99 0.

48 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

7.5.8 Cross-Reference Streams

7.5.8.1 General

Beginning with PDF 1.5, cross-reference information may be stored in a cross-reference stream instead of in a
cross-reference table. Cross-reference streams provide the following advantages:

A more compact representation of cross-reference information

e The ability to access compressed objects that are stored in object streams (see 7.5.7, "Object Streams")
and to allow new cross-reference entry types to be added in the future

Cross-reference streams are stream objects (see 7.3.8, "Stream Objects"), and contain a dictionary and a data
stream. Each cross-reference stream contains the information equivalent to the cross-reference table (see
7.5.4, "Cross-Reference Table") and trailer (see 7.5.5, "File Trailer") for one cross-reference section.

EXAMPLE In this example, the trailer dictionary entries are stored in the stream dictionary, and the cross-reference
table entries are stored as the stream data.

... Objects ...

12 0 obj % Cross-reference stream
<< [Type /XRef % Cross-reference stream dictionary
[Size ...
/Root ...
>>

stream

... Stream data containing cross-reference information ...
endstream
endobj

... more objects ...

startxref
byte_offset_of_cross-reference_stream (points to object 12)
%YEOF

The value following the startxref keyword shall be the offset of the cross-reference stream rather than the xref
keyword. For files that use cross-reference streams entirely (that is, files that are not hybrid-reference files; see
7.5.8.4, "Compatibility with Applications That Do Not Support Compressed Reference Streams"), the keywords
xref and trailer shall no longer be used. Therefore, with the exception of the startxref address %%EOF
segment and comments, a file may be entirely a sequence of objects.

In linearized files (see F.3, "Linearized PDF Document Structure"), the document catalog, the linearization
dictionary, and page objects shall not appear in an object stream.

7.5.8.2 Cross-Reference Stream Dictionary

Cross-reference streams may contain the entries shown in Table 17 in addition to the entries common to all
streams (Table 5) and trailer dictionaries (Table 15). Since some of the information in the cross-reference
stream is needed by the conforming reader to construct the index that allows indirect references to be resolved,
the entries in cross-reference streams shall be subject to the following restrictions:

e The values of all entries shown in Table 17 shall be direct objects; indirect references shall not be
permitted. For arrays (the Index and W entries), all of their elements shall be direct objects as well. If the
stream is encoded, the Filter and DecodeParms entries in Table 5 shall also be direct objects.

» Other cross-reference stream entries not listed in Table 17 may be indirect; in fact, some (such as Root in
Table 15) shall be indirect.

o Adobe Systems Incorporated 2008 — All rights reserved 49

PDF 32000-1:2008

The cross-reference stream shall not be encrypted and strings appearing in the cross-reference stream
dictionary shall not be encrypted. It shall not have a Filter entry that specifies a Crypt filter (see 7.4.10,
"Crypt Filter").

Table 17 — Additional entries specific to a cross-reference stream dictionary

key

type

description

Type

name

(Required) The type of PDF object that this dictionary describes; shall be
XRef for a cross-reference stream.

Size

integer

(Required) The number one greater than the highest object number used in
this section or in any section for which this shall be an update. It shall be
equivalent to the Size entry in a trailer dictionary.

Index

array

(Optional) An array containing a pair of integers for each subsection in this
section. The first integer shall be the first object number in the subsection;
the second integer shall be the number of entries in the subsection

The array shall be sorted in ascending order by object number. Subsections
cannot overlap; an object number may have at most one entry in a section.

Default value: [0 Size].

Prev

integer

(Present only if the file has more than one cross-reference stream; not
meaningful in hybrid-reference files; see 7.5.8.4, "Compatibility with
Applications That Do Not Support Compressed Reference Streams") The
byte offset in the decoded stream from the beginning of the file to the
beginning of the previous cross-reference stream. This entry has the same
function as the Prev entry in the trailer dictionary (Table 15).

array

(Required) An array of integers representing the size of the fields in a single
cross-reference entry. Table 18 describes the types of entries and their
fields. For PDF 1.5, W always contains three integers; the value of each
integer shall be the number of bytes (in the decoded stream) of the
corresponding field.

EXAMPLE [1 2 1] means that the fields are one byte, two bytes, and
one byte, respectively.

A value of zero for an element in the W array indicates that the
corresponding field shall not be present in the stream, and the default value
shall be used, if there is one. If the first element is zero, the type field shall
not be present, and shall default to type 1.

The sum of the items shall be the total length of each entry; it can be used
with the Index array to determine the starting position of each subsection.

Different cross-reference streams in a PDF file may use different values for
W.

7.5.8.3 Cross-Reference Stream Data

Each entry in a cross-reference stream shall have one or more fields, the first of which designates the entry’s
type (see Table 18). In PDF 1.5 through PDF 1.7, only types O, 1, and 2 are allowed. Any other value shall be
interpreted as a reference to the null object, thus permitting new entry types to be defined in the future.

50

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

The fields are written in increasing order of field number; the length of each field shall be determined by the
corresponding value in the W entry (see Table 17). Fields requiring more than one byte are stored with the
high-order byte first.

Table 18 — Entries in a cross-reference stream

Type Field Description

0 1 The type of this entry, which shall be 0. Type O entries define
the linked list of free objects (corresponding to f entries in a
cross-reference table).

2 The object number of the next free object.
3 The generation number to use if this object number is used
again.
1 1 The type of this entry, which shall be 1. Type 1 entries define

objects that are in use but are not compressed (corresponding
to n entries in a cross-reference table).

2 The byte offset of the object, starting from the beginning of the
file.

3 The generation number of the object. Default value: 0.

2 1 The type of this entry, which shall be 2. Type 2 entries define

compressed objects.

2 The object number of the object stream in which this object is
stored. (The generation number of the object stream shall be
implicitly 0.)

3 The index of this object within the object stream.

Like any stream, a cross-reference stream shall be an indirect object. Therefore, an entry for it shall exist in
either a cross-reference stream (usually itself) or in a cross-reference table (in hybrid-reference files; see
7.5.8.4, "Compatibility with Applications That Do Not Support Compressed Reference Streams").

7.5.8.4 Compatibility with Applications That Do Not Support Compressed Reference Streams

Readers designed only to support versions of PDF before PDF 1.5, and hence do not support cross-reference
streams, cannot access objects that are referenced by cross-reference streams. If a file uses cross-reference
streams exclusively, it cannot be opened by such readers.

However, it is possible to construct a file called a hybrid-reference file that is readable by readers designed only
to support versions of PDF before PDF 1.5. Such a file contains objects referenced by standard cross-
reference tables in addition to objects in object streams that are referenced by cross-reference streams.

In these files, the trailer dictionary may contain, in addition to the entry for trailers shown in Table 15, an entry,
as shown in Table 19. This entry may be ignored by readers designed only to support versions of PDF before
PDF 1.5, which therefore have no access to entries in the cross-reference stream the entry refers to.

Table 19 — Additional entries in a hybrid-reference file’s trailer dictionary

Key Type Value

XRefStm integer (Optional) The byte offset in the decoded stream from the beginning of the file
of a cross-reference stream.

o Adobe Systems Incorporated 2008 — All rights reserved 51

PDF 32000-1:2008

The Size entry of the trailer shall be large enough to include all objects, including those defined in the cross-
reference stream referenced by the XRefStm entry. However, to allow random access, a main cross-reference
section shall contain entries for all objects numbered 0 through Size - 1 (see 7.5.4, "Cross-Reference Table").
Therefore, the XRefStm entry shall not be used in the trailer dictionary of the main cross-reference section but
only in an update cross-reference section.

When a conforming reader opens a hybrid-reference file, objects with entries in cross-reference streams are
not hidden. When the conforming reader searches for an object, if an entry is not found in any given standard
cross-reference section, the search shall proceed to a cross-reference stream specified by the XRefStm entry
before looking in the previous cross-reference section (the Prev entry in the trailer).

Hidden objects, therefore, have two cross-reference entries. One is in the cross-reference stream. The other is
a free entry in some previous section, typically the section referenced by the Prev entry. A conforming reader
shall look in the cross-reference stream first, shall find the object there, and shall ignore the free entry in the
previous section. A reader designed only to support versions of PDF before PDF 1.5 ignores the cross-
reference stream and looks in the previous section, where it finds the free entry. The free entry shall have a
next-generation number of 65535 so that the object number shall not be reused.

There are limitations on which objects in a hybrid-reference file can be hidden without making the file appear
invalid to readers designed only to support versions of PDF before PDF 1.5. In particular, the root of the PDF
file and the document catalog (see 7.7.2, "Document Catalog") shall not be hidden, nor any object that is visible
from the root. Such objects can be determined by starting from the root and working recursively:

« Inany dictionary that is visible, direct objects shall be visible. The value of any required key-value pair shall
be visible.

< Inany array that is visible, every element shall be visible.

« Resource dictionaries in content streams shall be visible. Although a resource dictionary is not required,
strictly speaking, the content stream to which it is attached is assumed to contain references to the
resources.

In general, the objects that may be hidden are optional objects specified by indirect references. A conforming
reader can resolve those references by processing the cross-reference streams. In a reader designed only to
support versions of PDF before PDF 1.5, the objects appear to be free, and the references shall be treated as
references to the null object.

EXAMPLE 1 The Outlines entry in the catalog dictionary is optional. Therefore, its value may be an indirect reference
to a hidden object. A reader designed only to support versions of PDF before PDF 1.5 treats it as a
reference to the null object, which is equivalent to having omitted the entry entirely; a conforming reader
recognizes it.

If the value of the Outlines entry is an indirect reference to a visible object, the entire outline tree shall be
visible because nodes in the outline tree contain required pointers to other nodes.

Items that shall be visible include the entire page tree, fonts, font descriptors, and width tables. Objects that
may be hidden in a hybrid-reference file include the structure tree, the outline tree, article threads, annotations,
destinations, Web Capture information, and page labels,.

EXAMPLE 2 In this example, an ASCIlIHexDecode filter is specified to make the format and contents of the cross-
reference stream readable.

This example shows a hybrid-reference file containing a main cross-reference section and an update
cross-reference section with an XRefStm entry that points to a cross-reference stream (object 11), which
in turn has references to an object stream (object 2).

In this example, the catalog (object 1) contains an indirect reference (3 0 R) to the root of the structure

tree. The search for the object starts at the update cross-reference table, which has no objects in it. The
search proceeds depending on the version of the conforming reader.

52 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

One choice for a reader designed only to support versions of PDF before PDF 1.5 is to continue the
search by following the Prev pointer to the main cross-reference table. That table defines object 3 as a
free object, which is treated as the null object. Therefore, the entry is considered missing, and the
document has no structure tree.

Another choice for a conforming reader, is to continue the search by following the XRefStm pointer to the
cross-reference stream (object 11). It defines object 3 as a compressed object, stored at index O in the
object stream (2 0 obj). Therefore, the document has a structure tree.

10 obj % The document root, at offset 23.
<< [Type /Catalog
/StructTreeRoot 30 R

>>
endobj

12 0 obj
endobj
99 0 obj
endobj

% The main xref section, at offset 2664 is next with entries for objects 0-99.
% Objects 2 through 11 are marked free and objects 12, 13 and 99 are marked in use.
xref
0100
0000000002 65535 f
0000000023 00000 n
0000000003 65535 f
0000000004 65535 f
0000000005 65535 f
0000000006 65535 f
0000000007 65535 f
0000000008 65535 f
0000000009 65535 f
0000000010 65535 f
0000000011 65535 f
0000000000 65535 f
0000000045 00000 n
0000000179 00000 n
... cross-reference entries for objects 14 through 98 ...
0000002201 00000 n
trailer

<< /Size 100

/Root10R
/ID ...

>>
% The main xref section starts at offset 2664.
startxref

2664
%%EOF

2 0 obj % The object stream, at offset 3722
<< /Length ...
/N 8 % This stream contains 8 objects.
[First 47 % The stream-offset of the first object
>>
stream
30450572 ... the numbers and stream-offsets of the remaining 5 objects followed by dictionary
objects 3-5 ...
<< [Type /StructTreeRoot
IK40R
/RoleMap 50 R

o Adobe Systems Incorporated 2008 — All rights reserved 53

PDF 32000-1:2008

/ClassMap 6 O R
/ParentTree 70 R
/ParentTreeNextKey 8
>>
<< /S /Workbook
/IP80OR
/IK90OR
>>
<< /Workbook /Div
/Worksheet /Sect
/TextBox /Figure
/Shape /Figure
>>
... definitions for objects 6 through 10 ...
endstream
endobj

11 0 obj % The cross-reference stream, at offset 4899
<< [Type /XRef
/Index [2 10] % This stream contains entries for objects 2 through 11
/Size 100
/W ([121] % The byte-widths of each field
[Filter /ASCIlIHexDecode % For readability only

>>
stream

01 0EBAO

02 0002 00

02 0002 01

02 0002 02

02 0002 03

02 0002 04

02 0002 05

02 0002 06

02 0002 07

0113230
endstream
endobj
% The entries above are for: object 2 (OXOE8A = 3722), object 3 (in object stream 2, index 0),
% object 4 (in object stream 2, index 1) ... object 10 (in object stream 2, index 7),
% object 11 (0x1323 = 4899).

% The update xref section starting at offset 5640. There are no entries in this section.
xref
00
trailer
<< /Size 100
/Prev 2664 % Offset of previous xref section
/XRefStm 4899
/Root10R
/ID ...
>>
startxref
5640
%%EOF

The previous example illustrates several other points:

54

The object stream is unencoded and the cross-reference stream uses an ASCII hexadecimal encoding for
clarity. In practice, both streams should be Flate-encoded. PDF comments shall not be included in a cross-
reference table or in cross-reference streams.

The hidden objects, 2 through 11, are numbered consecutively. In practice, hidden objects and other free
items in a cross-reference table need not be linked in ascending order until the end.

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

e The update cross-reference table need not contain any entries. A conforming writer that uses the hybrid-
reference format creates the main cross-reference table, the update cross-reference table, and the cross-
reference stream at the same time. Objects 12 and 13, for example, are not compressed. They might have
entries in the update table. Since objects 2 and 11, the object stream and the cross-reference stream, are
not compressed, they might also be defined in the update table. Since they are part of the hidden section,
however, it makes sense to define them in the cross-reference stream.

* The update cross-reference section shall appear at the end of the file, but otherwise, there are no ordering
restrictions on any of the objects or on the main cross-reference section. However, a file that uses both the
hybrid-reference format and the linearized format has ordering requirements (see Annex F).

7.6 Encryption

7.6.1 General

A PDF document can be encrypted (PDF 1.1) to protect its contents from unauthorized access. Encryption
applies to all strings and streams in the document's PDF file, with the following exceptions:

e The values for the ID entry in the trailer
e Any strings in an Encrypt dictionary

* Any strings that are inside streams such as content streams and compressed object streams, which
themselves are encrypted

Encryption is not applied to other object types such as integers and boolean values, which are used primarily to
convey information about the document's structure rather than its contents. Leaving these values unencrypted
allows random access to the objects within a document, whereas encrypting the strings and streams protects
the document's contents.

When a PDF stream object (see 7.3.8, "Stream Objects") refers to an external file, the stream’s contents shall
not be encrypted, since they are not part of the PDF file itself. However, if the contents of the stream are
embedded within the PDF file (see 7.11.4, "Embedded File Streams"), they shall be encrypted like any other
stream in the file. Beginning with PDF 1.5, embedded files can be encrypted in an otherwise unencrypted
document (see 7.6.5, "Crypt Filters").

Encryption-related information shall be stored in a document’s encryption dictionary, which shall be the value of
the Encrypt entry in the document’s trailer dictionary (see Table 15). The absence of this entry from the trailer
dictionary means that a conforming reader shall consider the document to be not encrypted. The entries shown
in Table 20 are common to all encryption dictionaries.

The encryption dictionary’s Filter entry identifies the file’s security handler, a software module that implements
various aspects of the encryption process and controls access to the contents of the encrypted document. PDF
specifies a standard password-based security handler that all conforming readers shall support, but conforming
readers can optionally provide additional security handlers of their own.

The SubFilter entry specifies the syntax of the encryption dictionary contents. It allows interoperability between
handlers; that is, a document can be decrypted by a handler other than the preferred one (the Filter entry) if
they both support the format specified by SubFilter.

The V entry, in specifying which algorithm to use, determines the length of the encryption key, on which the
encryption (and decryption) of data in a PDF file shall be based. For V values 2 and 3, the Length entry
specifies the exact length of the encryption key. In PDF 1.5, a value of 4 for V permits the security handler to
use its own encryption and decryption algorithms and to specify crypt filters to use on specific streams (see
7.6.5, "Crypt Filters").

The remaining contents of the encryption dictionary shall be determined by the security handler and may vary
from one handler to another. Entries for the standard security handler are described in 7.6.3, "Standard

o Adobe Systems Incorporated 2008 — All rights reserved 55

PDF 32000-1:2008

Security Handler." Entries for public-key security handlers are described in 7.6.4, "Public-Key Security
Handlers."

Table 20 — Entries common to all encryption dictionaries

Key Type Value

Filter name (Required) The name of the preferred security handler for this document. It shall
be the name of the security handler that was used to encrypt the document. If
SubFilter is not present, only this security handler shall be used when opening
the document. If it is present, a conforming reader can use any security handler
that implements the format specified by SubFilter.

Standard shall be the name of the built-in password-based security handler.
Names for other security handlers may be registered by using the procedure
described in Annex E.

SubFilter name (Optional; PDF 1.3) A name that completely specifies the format and
interpretation of the contents of the encryption dictionary. It allows security
handlers other than the one specified by Filter to decrypt the document. If this
entry is absent, other security handlers shall not decrypt the document.

NOTE This entry was introduced in PDF 1.3 to support the use of public-
key cryptography in PDF files (see 7.6.4, "Public-Key Security
Handlers"); however, it was not incorporated into the PDF
Reference until the fourth edition (PDF 1.5).

\% number (Optional) A code specifying the algorithm to be used in encrypting and
decrypting the document:

0 An algorithm that is undocumented. This value shall not be used.

1 "Algorithm 1: Encryption of data using the RC4 or AES algorithms" in 7.6.2,
"General Encryption Algorithm,” with an encryption key length of 40 bits; see
below.

2 (PDF 1.4) "Algorithm 1: Encryption of data using the RC4 or AES algorithms"
in 7.6.2, "General Encryption Algorithm," but permitting encryption key lengths
greater than 40 bits.

3 (PDF 1.4) An unpublished algorithm that permits encryption key lengths
ranging from 40 to 128 bits. This value shall not appear in a conforming PDF
file.

4 (PDF 1.5) The security handler defines the use of encryption and decryption
in the document, using the rules specified by the CF, StmF, and StrF entries.

The default value if this entry is omitted shall be 0, but when present should be a
value of 1 or greater.

Length integer (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits.
The value shall be a multiple of 8, in the range 40 to 128. Default value: 40.

CF dictionary | (Optional; meaningful only when the value of V is 4; PDF 1.5) A dictionary whose
keys shall be crypt filter names and whose values shall be the corresponding
crypt filter dictionaries (see Table 25). Every crypt filter used in the document
shall have an entry in this dictionary, except for the standard crypt filter names
(see Table 26).

The conforming reader shall ignore entries in CF dictionary with the keys equal to
those listed in Table 26 and use properties of the respective standard crypt filters.

StmF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the
crypt filter that shall be used by default when decrypting streams. The name shall
be a key in the CF dictionary or a standard crypt filter name specified in Table 26.
All streams in the document, except for cross-reference streams (see 7.5.8,
"Cross-Reference Streams") or streams that have a Crypt entry in their Filter
array (see Table 6), shall be decrypted by the security handler, using this crypt
filter.

Default value: Identity.

56 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 20 — Entries common to all encryption dictionaries (continued)

Key Type Value

StrF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the
crypt filter that shall be used when decrypting all strings in the document. The
name shall be a key in the CF dictionary or a standard crypt filter name specified
in Table 26.

Default value: Identity.

EFF name (Optional; meaningful only when the value of V is 4; PDF 1.6) The name of the
crypt filter that shall be used when encrypting embedded file streams that do not
have their own crypt filter specifier; it shall correspond to a key in the CF
dictionary or a standard crypt filter name specified in Table 26.

This entry shall be provided by the security handler. Conforming writers shall
respect this value when encrypting embedded files, except for embedded file
streams that have their own crypt filter specifier. If this entry is not present, and
the embedded file stream does not contain a crypt filter specifier, the stream shall
be encrypted using the default stream crypt filter specified by StmF.

Unlike strings within the body of the document, those in the encryption dictionary shall be direct objects. The
contents of the encryption dictionary shall not be encrypted (the algorithm specified by the V entry). Security
handlers shall be responsible for encrypting any data in the encryption dictionary that they need to protect.

NOTE Conforming writers have two choices if the encryption methods and syntax provided by PDF are not sufficient
for their needs: they can provide an alternate security handler or they can encrypt whole PDF documents
themselves, not making use of PDF security.

7.6.2 General Encryption Algorithm
One of the following algorithms shall be used when encrypting data in a PDF file:

e A proprietary encryption algorithm known as RC4. RC4 is a symmetric stream cipher: the same algorithm
shall be used for both encryption and decryption, and the algorithm does not change the length of the data.
RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Independent software vendors may be
required to license RC4 to develop software that encrypts or decrypts PDF documents. For further
information, visit the RSA Web site at <http://www.rsasecurity.com> or send e-mail to
<products@rsasecurity.com>.

* The AES (Advanced Encryption Standard) algorithm (beginning with PDF 1.6). AES is a symmetric block
cipher: the same algorithm shall be used for both encryption and decryption, and the length of the data
when encrypted is rounded up to a multiple of the block size, which is fixed to always be 16 bytes, as
specified in FIPS 197, Advanced Encryption Standard (AES); see the Bibliography).

Strings and streams encrypted with AES shall use a padding scheme that is described in Internet RFC
2898, PKCS #5: Password-Based Cryptography Specification Version 2.0; see the Bibliography. For an
original message length of M, the pad shall consist of 16 - (M mod 16) bytes whose value shall also be 16
- (M mod 16).

EXAMPLE A 9-byte message has a pad of 7 bytes, each with the value 0x07. The pad can be unambiguously
removed to determine the original message length when decrypting. Note that the pad is present when M
is evenly divisible by 16; it contains 16 bytes of 0x10.

PDF’s standard encryption methods also make use of the MD5 message-digest algorithm for key generation
purposes (described in Internet RFC 1321, The MD5 Message-Digest Algorithm; see the Bibliography).

The encryption of data in a PDF file shall be based on the use of an encryption key computed by the security

handler. Different security handlers compute the encryption key using their own mechanisms. Regardless of
how the key is computed, its use in the encryption of data shall always be the same (see "Algorithm 1:

o Adobe Systems Incorporated 2008 — All rights reserved 57

http://www.rsasecurity.com
http://www.rsasecurity.com
http://www.rsasecurity.com
mailto:products@rsasecurity.com

PDF 32000-1:2008

Encryption of data using the RC4 or AES algorithms"). Because the RC4 algorithm and AES algorithms are
symmetric, this same sequence of steps shall be used both to encrypt and to decrypt data.

Algorithms in 7.6, “Encryption” are uniquely numbered within that clause in a manner that maintains
compatibility with previous documentation.

Algorithm 1: Encryption of data using the RC4 or AES algorithms

a) Obtain the object number and generation number from the object identifier of the string or stream to be
encrypted (see 7.3.10, "Indirect Objects"). If the string is a direct object, use the identifier of the indirect
object containing it.

b) For all strings and streams without crypt filter specifier; treating the object number and generation number
as binary integers, extend the original n-byte encryption key to n + 5 bytes by appending the low-order 3
bytes of the object number and the low-order 2 bytes of the generation number in that order, low-order byte
first. (nis 5 unless the value of V in the encryption dictionary is greater than 1, in which case n is the value
of Length divided by 8.)

If using the AES algorithm, extend the encryption key an additional 4 bytes by adding the value “sAIT”,
which corresponds to the hexadecimal values 0x73, 0x41, Ox6C, 0x54. (This addition is done for backward
compatibility and is not intended to provide additional security.)

¢) Initialize the MD5 hash function and pass the result of step (b) as input to this function.

d) Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5 hash as the key for the RC4
or AES symmetric key algorithms, along with the string or stream data to be encrypted.

If using the AES algorithm, the Cipher Block Chaining (CBC) mode, which requires an initialization vector,
is used. The block size parameter is set to 16 bytes, and the initialization vector is a 16-byte random
number that is stored as the first 16 bytes of the encrypted stream or string.

The output is the encrypted data to be stored in the PDF file.

Stream data shall be encrypted after applying all stream encoding filters and shall be decrypted before applying
any stream decoding filters. The number of bytes to be encrypted or decrypted shall be given by the Length
entry in the stream dictionary. Decryption of strings (other than those in the encryption dictionary) shall be done
after escape-sequence processing and hexadecimal decoding as appropriate to the string representation
described in 7.3.4, "String Objects."

7.6.3 Standard Security Handler

7.6.3.1 General

PDF's standard security handler shall allow access permissions and up to two passwords to be specified for a
document: an owner password and a user password. An application’s decision to encrypt a document shall be
based on whether the user creating the document specifies any passwords or access restrictions.

EXAMPLE A conforming writer may have a security settings dialog box that the user can invoke before saving the
PDF file.

If passwords or access restrictions are specified, the document shall be encrypted, and the permissions and
information required to validate the passwords shall be stored in the encryption dictionary. Documents in which
only file attachments are encrypted shall use the same password as the user and owner password.

NOTE 1 A conforming writer may also create an encrypted document without any user interaction if it has some other
source of information about what passwords and permissions to use.

58 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

If a user attempts to open an encrypted document that has a user password, the conforming reader shall first
try to authenticate the encrypted document using the padding string defined in 7.6.3.3, "Encryption Key
Algorithm" (default user password):

« If this authentication attempt is successful, the conforming reader may open, decrypt and display the
document on the screen.

« If this authentication attempt fails, the application should prompt for a password. Correctly supplying either
password (owner or user password) should enable the user to open the document, decrypt it, and display it
on the screen.

Whether additional operations shall be allowed on a decrypted document depends on which password (if any)
was supplied when the document was opened and on any access restrictions that were specified when the
document was created:

* Opening the document with the correct owner password should allow full (owner) access to the document.
This unlimited access includes the ability to change the document'’s passwords and access permissions.

* Opening the document with the correct user password (or opening a document with the default password)
should allow additional operations to be performed according to the user access permissions specified in
the document’s encryption dictionary.

Access permissions shall be specified in the form of flags corresponding to the various operations, and the set
of operations to which they correspond shall depend on the security handler’s revision number (also stored in
the encryption dictionary). If the security handler’s revision number is 2 or greater, the operations to which user
access can be controlled shall be as follows:

« Modifying the document’s contents

e Copying or otherwise extracting text and graphics from the document, including extraction for accessibility
purposes (that is, to make the contents of the document accessible through assistive technologies such as
screen readers or Braille output devices; see 14.9, "Accessibility Support".

* Adding or modifying text annotations (see 12.5.6.4, "Text Annotations") and interactive form fields (see
12.7, "Interactive Forms")

* Printing the document

If the security handler’s revision number is 3 or greater, user access to the following operations shall be
controlled more selectively:

« Filling in forms (that is, filling in existing interactive form fields) and signing the document (which amounts
to filling in existing signature fields, a type of interactive form field).

« Assembling the document: inserting, rotating, or deleting pages and creating navigation elements such as
bookmarks or thumbnail images (see 12.3, "Document-Level Navigation™).

e Printing to a representation from which a faithful digital copy of the PDF content could be generated.
Disallowing such printing may result in degradation of output quality.

In addition, security handlers of revisions 3 and greater shall enable the extraction of text and graphics (in
support of accessibility to users with disabilities or for other purposes) to be controlled separately.

If a security handler of revision 4 is specified, the standard security handler shall support crypt filters (see 7.6.5,
"Crypt Filters"). The support shall be limited to the Identity crypt filter (see Table 26) and crypt filters hamed
StdCF whose dictionaries contain a CFM value of V2 or AESV2 and an AuthEvent value of DocOpen. Public-
Key security handlers in this case shall use crypt filters named DefaultCryptFilter when all document content
is encrypted, and shall use crypt filters named DefEmbeddedFile when file attachments only are encrypted in

o Adobe Systems Incorporated 2008 — All rights reserved 59

PDF 32000-1:2008

place of StdCF name. This nomenclature shall not be used as indicator of the type of the security handler or
encryption.

Once the document has been opened and decrypted successfully, a conforming reader technically has access
to the entire contents of the document. There is nothing inherent in PDF encryption that enforces the document
permissions specified in the encryption dictionary. Conforming readers shall respect the intent of the document
creator by restricting user access to an encrypted PDF file according to the permissions contained in the file.

NOTE 2 PDF 1.5 introduces a set of access permissions that do not require the document to be encrypted (see 12.8.4,
"Permissions"). This enables limited access to a document when a user is not be able to respond to a prompt
for a password. For example, there may be conforming readers that do not have a person running them such
as printing off-line or on a server.

7.6.3.2 Standard Encryption Dictionary

Table 21 shows the encryption dictionary entries for the standard security handler (in addition to those in
Table 20).

Table 21 — Additional encryption dictionary entries for the standard security handler

Key Type Value

R number (Required) A number specifying which revision of the standard security
handler shall be used to interpret this dictionary:

2 if the document is encrypted with a V value less than 2 (see Table 20)
and does not have any of the access permissions set to 0 (by means of
the P entry, below) that are designated “Security handlers of revision 3
or greater” in Table 22

3 if the document is encrypted with a V value of 2 or 3, or has any
“Security handlers of revision 3 or greater” access permissions set to 0

4 if the document is encrypted with a V value of 4

(@) string (Required) A 32-byte string, based on both the owner and user passwords,
that shall be used in computing the encryption key and in determining
whether a valid owner password was entered. For more information, see
7.6.3.3, "Encryption Key Algorithm," and 7.6.3.4, "Password Algorithms."

U string (Required) A 32-byte string, based on the user password, that shall be
used in determining whether to prompt the user for a password and, if so,
whether a valid user or owner password was entered. For more
information, see 7.6.3.4, "Password Algorithms."

P integer (Required) A set of flags specifying which operations shall be permitted
when the document is opened with user access (see Table 22).

EncryptMetadata boolean (Optional; meaningful only when the value of V is 4; PDF 1.5) Indicates
whether the document-level metadata stream (see 14.3.2, "Metadata
Streams") shall be encrypted. Conforming products should respect this
value.

Default value: true.

The values of the O and U entries in this dictionary shall be used to determine whether a password entered
when the document is opened is the correct owner password, user password, or neither.

The value of the P entry shall be interpreted as an unsigned 32-bit quantity containing a set of flags specifying
which access permissions shall be granted when the document is opened with user access. Table 22 shows
the meanings of these flags. Bit positions within the flag word shall be numbered from 1 (low-order) to 32 (high-
order). A 1 bit in any position shall enable the corresponding access permission. Which bits shall be
meaningful, and in some cases how they shall be interpreted, shall depend on the security handler’s revision
number (specified in the encryption dictionary’s R entry).

60 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Conforming readers shall ignore all flags other than those at bit positions 3, 4, 5, 6, 9, 10, 11, and 12.

NOTE PDF integer objects can be interpreted as binary values in a signed twos-complement form. Since all the
reserved high-order flag bits in the encryption dictionary’s P value are required to be 1, the integer value P
shall be specified as a negative integer. For example, assuming revision 2 of the security handler, the value -
44 permits printing and copying but disallows modifying the contents and annotations.

Table 22 — User access permissions

Bit position Meaning

3 (Security handlers of revision 2) Print the document.
(Security handlers of revision 3 or greater) Print the
document (possibly not at the highest quality level,
depending on whether bit 12 is also set).

4 Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

5 (Security handlers of revision 2) Copy or otherwise extract
text and graphics from the document, including extracting text
and graphics (in support of accessibility to users with
disabilities or for other purposes).

(Security handlers of revision 3 or greater) Copy or otherwise
extract text and graphics from the document by operations
other than that controlled by bit 10.

6 Add or modify text annotations, fill in interactive form fields,
and, if bit 4 is also set, create or modify interactive form fields
(including signature fields).

9 (Security handlers of revision 3 or greater) Fill in existing
interactive form fields (including signature fields), even if bit 6
is clear.

10 (Security handlers of revision 3 or greater) Extract text and

graphics (in support of accessibility to users with disabilities
or for other purposes).

11 (Security handlers of revision 3 or greater) Assemble the
document (insert, rotate, or delete pages and create
bookmarks or thumbnail images), even if bit 4 is clear.

12 (Security handlers of revision 3 or greater) Print the
document to a representation from which a faithful digital
copy of the PDF content could be generated. When this bit is
clear (and bit 3 is set), printing is limited to a low-level
representation of the appearance, possibly of degraded
quality.

7.6.3.3 Encryption Key Algorithm
As noted earlier, one function of a security handler is to generate an encryption key for use in encrypting and

decrypting the contents of a document. Given a password string, the standard security handler computes an
encryption key as shown in "Algorithm 2: Computing an encryption key".

Algorithm 2: Computing an encryption key
a) Pad or truncate the password string to exactly 32 bytes. If the password string is more than 32 bytes long,

use only its first 32 bytes; if it is less than 32 bytes long, pad it by appending the required number of
additional bytes from the beginning of the following padding string:

o Adobe Systems Incorporated 2008 — All rights reserved 61

PDF 32000-1:2008

< 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 DO 68 3E 80 2F 0C A9 FE 64 53 69 7A >

That is, if the password string is n bytes long, append the first 32 - n bytes of the padding string to the end
of the password string. If the password string is empty (zero-length), meaning there is no user password,
substitute the entire padding string in its place.

b) Initialize the MD5 hash function and pass the result of step (a) as input to this function.

c) Pass the value of the encryption dictionary’s O entry to the MD5 hash function. ("Algorithm 3: Computing
the encryption dictionary’s O (owner password) value" shows how the O value is computed.)

d) Convert the integer value of the P entry to a 32-bit unsigned binary number and pass these bytes to the
MD5 hash function, low-order byte first.

e) Pass the first element of the file’s file identifier array (the value of the ID entry in the document’s trailer
dictionary; see Table 15) to the MD5 hash function.

NOTE The first element of the ID array generally remains the same for a given document. However, in some
situations, conforming writers may regenerate the ID array if a new generation of a document is created.
Security handlers are encouraged not to rely on the ID in the encryption key computation.

f) (Security handlers of revision 4 or greater) If document metadata is not being encrypted, pass 4 bytes with
the value OXFFFFFFFF to the MD5 hash function.

g) Finish the hash.

h) (Security handlers of revision 3 or greater) Do the following 50 times: Take the output from the previous
MD5 hash and pass the first n bytes of the output as input into a new MD5 hash, where n is the number of
bytes of the encryption key as defined by the value of the encryption dictionary’s Length entry.

i) Set the encryption key to the first n bytes of the output from the final MD5 hash, where n shall always be 5
for security handlers of revision 2 but, for security handlers of revision 3 or greater, shall depend on the
value of the encryption dictionary’s Length entry.

This algorithm, when applied to the user password string, produces the encryption key used to encrypt or
decrypt string and stream data according to "Algorithm 1: Encryption of data using the RC4 or AES algorithms"
in 7.6.2, "General Encryption Algorithm." Parts of this algorithm are also used in the algorithms described
below.

7.6.3.4 Password Algorithms

In addition to the encryption key, the standard security handler shall provide the contents of the encryption
dictionary (Table 20 and Table 21). The values of the Filter, V, Length, R, and P entries are straightforward, but
the computation of the O (owner password) and U (user password) entries requires further explanation. The

algorithms 3 through 7 that follow show how the values of the owner password and user password entries shall
be computed (with separate versions of the latter depending on the revision of the security handler).

Algorithm 3: Computing the encryption dictionary’s O (owner password) value

a) Pad or truncate the owner password string as described in step (a) of "Algorithm 2: Computing an
encryption key". If there is no owner password, use the user password instead.

b) Initialize the MD5 hash function and pass the result of step (a) as input to this function.

c) (Security handlers of revision 3 or greater) Do the following 50 times: Take the output from the previous
MD5 hash and pass it as input into a new MD5 hash.

62 o Adobe Systems Incorporated 2008 — All rights reserved

d)

e)

f)

9)

h)

PDF 32000-1:2008

Create an RC4 encryption key using the first n bytes of the output from the final MD5 hash, where n shall
always be 5 for security handlers of revision 2 but, for security handlers of revision 3 or greater, shall
depend on the value of the encryption dictionary’s Length entry.

Pad or truncate the user password string as described in step (a) of "Algorithm 2: Computing an encryption
key".

Encrypt the result of step (e), using an RC4 encryption function with the encryption key obtained in step

(d).

(Security handlers of revision 3 or greater) Do the following 19 times: Take the output from the previous
invocation of the RC4 function and pass it as input to a new invocation of the function; use an encryption
key generated by taking each byte of the encryption key obtained in step (d) and performing an XOR
(exclusive or) operation between that byte and the single-byte value of the iteration counter (from 1 to 19).

Store the output from the final invocation of the RC4 function as the value of the O entry in the encryption
dictionary.

Algorithm 4: Computing the encryption dictionary’s U (user password) value (Security handlers of
revision 2)

a)

b)

c)

Create an encryption key based on the user password string, as described in "Algorithm 2: Computing an
encryption key".

Encrypt the 32-byte padding string shown in step (a) of "Algorithm 2: Computing an encryption key", using
an RC4 encryption function with the encryption key from the preceding step.

Store the result of step (b) as the value of the U entry in the encryption dictionary.

Algorithm 5: Computing the encryption dictionary’s U (user password) value (Security handlers of
revision 3 or greater)

a) Create an encryption key based on the user password string, as described in "Algorithm 2: Computing an
encryption key".

b) Initialize the MD5 hash function and pass the 32-byte padding string shown in step (a) of "Algorithm 2:
Computing an encryption key" as input to this function.

c) Pass the first element of the file's file identifier array (the value of the ID entry in the document’s trailer
dictionary; see Table 15) to the hash function and finish the hash.

d) Encrypt the 16-byte result of the hash, using an RC4 encryption function with the encryption key from step
(a).

e) Do the following 19 times: Take the output from the previous invocation of the RC4 function and pass it as
input to a new invocation of the function; use an encryption key generated by taking each byte of the
original encryption key obtained in step (a) and performing an XOR (exclusive or) operation between that
byte and the single-byte value of the iteration counter (from 1 to 19).

f) Append 16 bytes of arbitrary padding to the output from the final invocation of the RC4 function and store
the 32-byte result as the value of the U entry in the encryption dictionary.

NOTE The standard security handler uses the algorithms 6 and 7 that follow, to determine whether a supplied

password string is the correct user or owner password. Note too that algorithm 6 can be used to determine
whether a document’s user password is the empty string, and therefore whether to suppress prompting for a
password when the document is opened.

o Adobe Systems Incorporated 2008 — All rights reserved 63

PDF 32000-1:2008

Algorithm 6: Authenticating the user password

a) Perform all but the last step of "Algorithm 4: Computing the encryption dictionary’s U (user password)
value (Security handlers of revision 2)" or "Algorithm 5: Computing the encryption dictionary’'s U (user
password) value (Security handlers of revision 3 or greater)" using the supplied password string.

b) If the result of step (a) is equal to the value of the encryption dictionary’s U entry (comparing on the first 16
bytes in the case of security handlers of revision 3 or greater), the password supplied is the correct user
password. The key obtained in step (a) (that is, in the first step of "Algorithm 4. Computing the encryption
dictionary’s U (user password) value (Security handlers of revision 2)" or "Algorithm 5: Computing the
encryption dictionary’s U (user password) value (Security handlers of revision 3 or greater)") shall be used
to decrypt the document.

Algorithm 7: Authenticating the owner password

a) Compute an encryption key from the supplied password string, as described in steps (a) to (d) of
"Algorithm 3: Computing the encryption dictionary’s O (owner password) value".

b) (Security handlers of revision 2 only) Decrypt the value of the encryption dictionary’s O entry, using an RC4
encryption function with the encryption key computed in step (a).

(Security handlers of revision 3 or greater) Do the following 20 times: Decrypt the value of the encryption
dictionary’s O entry (first iteration) or the output from the previous iteration (all subsequent iterations),
using an RC4 encryption function with a different encryption key at each iteration. The key shall be
generated by taking the original key (obtained in step (a)) and performing an XOR (exclusive or) operation
between each byte of the key and the single-byte value of the iteration counter (from 19 to 0).

c) The result of step (b) purports to be the user password. Authenticate this user password using "Algorithm
6: Authenticating the user password". If it is correct, the password supplied is the correct owner password.

7.6.4 Public-Key Security Handlers

7.6.4.1 General

Security handlers may use public-key encryption technology to encrypt a document (or strings and streams
within a document). When doing so, specifying one or more lists of recipients, where each list has its own
unique access permissions may be done. Only specified recipients shall open the encrypted document or
content, unlike the standard security handler, where a password determines access. The permissions defined
for public-key security handlers are shown in Table 24 in 7.6.4.2, "Public-Key Encryption Dictionary".

Public-key security handlers use the industry standard Public Key Cryptographic Standard Number 7
(PKCS#7) binary encoding syntax to encode recipient list, decryption key, and access permission information.
The PKCS#7 specification is in Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see
the Bibliography).

When encrypting the data, each recipient's X.509 public key certificate (as described in ITU-T
Recommendation X.509; see the Bibliography) shall be available. When decrypting the data, the conforming
reader shall scan the recipient list for which the content is encrypted and shall attempt to find a match with a
certificate that belongs to the user. If a match is found, the user requires access to the corresponding private
key, which may require authentication, possibly using a password. Once access is obtained, the private key
shall be used to decrypt the encrypted data.

7.6.4.2 Public-Key Encryption Dictionary

Encryption dictionaries for public-key security handlers contain the common entries shown in Table 20, whose
values are described above. In addition, they may contain the entry shown in Table 23 as described below.

The Filter entry shall be the name of a public-key security handler.

64 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

NOTE Examples of existing security handlers that support public-key encryption are Entrust.PPKEF,
Adobe.PPKLite, and Adobe.PubSec. This handler will be the preferred handler when encrypting the
document.

Permitted values of the SubFilter entry for use with conforming public-key security handlers are
adbe.pkcs7.s3, adbe.pkcs7.s4, which shall be used when not using crypt filters (see 7.6.5, "Crypt Filters")
and adbe.pkcs7.s5, which shall be used when using crypt filters.

The CF, StmF, and StrF entries may be present when SubFilter is adbe.pkcs7.s5.

Table 23 — Additional encryption dictionary entries for public-key security handlers

Key

Type

Value

Recipients

array

(Required when SubFilter is adbe.pkcs7.s3 or adbe.pkcs7.s4; PDF 1.3)
An array of byte-strings, where each string is a PKCS#7 object listing
recipients who have been granted equal access rights to the document. The
data contained in the PKCS#7 object shall include both a cryptographic key
that shall be used to decrypt the encrypted data and the access permissions
(see Table 24) that apply to the recipient list. There shall be only one
PKCS#7 object per unique set of access permissions; if a recipient appears
in more than one list, the permissions used shall be those in the first
matching list.

When SubFilter is adbe.pkcs7.s5, recipient lists shall be specified in the
crypt filter dictionary; see Table 27.

integer

(Required) A set of flags specifying which operations shall be permitted
when the document is opened with user access. If bit 2 is set to 1, all other
bits are ignored and all operations are permitted. If bit 2 is set to O,
permission for operations are based on the values of the remaining flags
defined in Table 24.

The value of the P entry shall be interpreted as an unsigned 32-bit quantity containing a set of flags specifying
which access permissions shall be granted when the document is opened with user access. Table 24 shows
the meanings of these flags. Bit positions within the flag word shall be numbered from 1 (low-order) to 32 (high-
order). A 1 bit in any position shall enable the corresponding access permission.

Conforming readers shall ignore all flags other than those at bit positions 2, 3, 4, 5, 6, 9, 10, 11, and 12.

Table 24 — Public-Key security handler user access permissions

Bit position Meaning

2 When set permits change of encryption and enables all other
permissions.

3 Print the document (possibly not at the highest quality level,
depending on whether bit 12 is also set).

4 Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

5 Copy or otherwise extract text and graphics from the
document by operations other than that controlled by bit 10.

6 Add or modify text annotations, fill in interactive form fields,
and, if bit 4 is also set, create or modify interactive form fields
(including signature fields).

9 Fill in existing interactive form fields (including signature
fields), even if bit 6 is clear.

10 Extract text and graphics (in support of accessibility to users

with disabilities or for other purposes).

o Adobe Systems Incorporated 2008 — All rights reserved

65

PDF 32000-1:2008

Table 24 — Public-Key security handler user access permissions (continued)

Bit position Meaning

11 Assemble the document (insert, rotate, or delete pages and
create bookmarks or thumbnail images), even if bit 4 is clear.

12 Print the document to a representation from which a faithful
digital copy of the PDF content could be generated. When
this bit is clear (and bit 3 is set), printing is limited to a low-
level representation of the appearance, possibly of degraded
quality.

7.6.4.3 Public-Key Encryption Algorithms

Figure 4 illustrates how PKCS#7 objects shall be used when encrypting PDF files. A PKCS#7 object is
designed to encapsulate and encrypt what is referred to as the enveloped data.

Plaintext byte array

PKCS#7 Object 20-byte seed ’Permissions*
* Permissions not pres-
Enveloped data I\ ent when PKCS#7 object
Decrypt is referenced from Crypt
filter decode parameter

dictionary

‘ PIalntext key

Used to generate
encryption key

Encrypted key
Jeff Smith
Encrypted key

‘ John Doe’s private key

Figure 4 — Public-key encryption algorithm

The enveloped data in the PKCS#7 object contains keying material that shall be used to decrypt the document
(or individual strings or streams in the document, when crypt filters are used; see 7.6.5, "Crypt Filters"). A key
shall be used to encrypt (and decrypt) the enveloped data. This key (the plaintext key in Figure 4) shall be
encrypted for each recipient, using that recipient’s public key, and shall be stored in the PKCS#7 object (as the
encrypted key for each recipient). To decrypt the document, that key shall be decrypted using the recipient’s
private key, which yields a decrypted (plaintext) key. That key, in turn, shall be used to decrypt the enveloped
data in the PKCS#7 object, resulting in a byte array that includes the following information:

66

A 20-byte seed that shall be used to create the encryption key that is used by "Algorithm 1: Encryption of
data using the RC4 or AES algorithms". The seed shall be a unique random number generated by the
security handler that encrypted the document.

A 4-byte value defining the permissions, least significant byte first. See Table 24 for the possible
permission values.

When SubFilter is adbe.pkcs7.s3, the relevant permissions shall be only those specified for revision 2 of
the standard security handler.

For adbe.pkcs7.s4, security handlers of revision 3 permissions shall apply.

For adbe.pkcs7.s5, which supports the use of crypt filters, the permissions shall be the same as
adbe.pkcs7.s4 when the crypt filter is referenced from the StmF or StrF entries of the encryption

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

dictionary. When referenced from the Crypt filter decode parameter dictionary of a stream object (see
Table 14), the 4 bytes of permissions shall be absent from the enveloped data.

The algorithms that shall be used to encrypt the enveloped data in the PKCS#7 object are: RC4 with key
lengths up to 256-bits, DES, Triple DES, RC2 with key lengths up to 128 bits, 128-bit AES in Cipher Block
Chaining (CBC) mode, 192-bit AES in CBC mode, 256-bit AES in CBC mode. The PKCS#7 specification is in
Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see the Bibliography).

The encryption key used by "Algorithm 1: Encryption of data using the RC4 or AES algorithms" shall be
calculated by means of an SHA-1 message digest operation that digests the following data, in order:

a) The 20 bytes of seed

b) The bytes of each item in the Recipients array of PKCS#7 objects in the order in which they appear in the
array

c) 4 bytes with the value OxFF if the key being generated is intended for use in document-level encryption
and the document metadata is being left as plaintext

The first n/8 bytes of the resulting digest shall be used as the encryption key, where n is the bit length of the
encryption key.

7.6.5 Crypt Filters

PDF 1.5 introduces crypt filters, which provide finer granularity control of encryption within a PDF file. The use
of crypt filters involves the following structures:

* The encryption dictionary (see Table 20) contains entries that enumerate the crypt filters in the document
(CF) and specify which ones are used by default to decrypt all the streams (StmF) and strings (StrF) in the
document. In addition, the value of the V entry shall be 4 to use crypt filters.

» Each crypt filter specified in the CF entry of the encryption dictionary shall be represented by a crypt filter
dictionary, whose entries are shown in Table 25.

» A stream filter type, the Crypt filter (see 7.4.10, "Crypt Filter") can be specified for any stream in the
document to override the default filter for streams. A conforming reader shall provide a standard Identity
filter which shall pass the data unchanged (see Table 26) to allow specific streams, such as document
metadata, to be unencrypted in an otherwise encrypted document. The stream’s DecodeParms entry shall
contain a Crypt filter decode parameters dictionary (see Table 14) whose Name entry specifies the
particular crypt filter to be used (if missing, Identity is used). Different streams may specify different crypt
filters.

Authorization to decrypt a stream shall always be obtained before the stream can be accessed. This typically
occurs when the document is opened, as specified by a value of DocOpen for the AuthEvent entry in the crypt
filter dictionary. Conforming readers and security handlers shall treat any attempt to access a stream for which
authorization has failed as an error. AuthEvent can also be EFOpen, which indicates the presence of an
embedded file that is encrypted with a crypt filter that may be different from the crypt filters used by default to
encrypt strings and streams in the document.

In the file specification dictionary (see 7.11.3, "File Specification Dictionaries"), related files (RF) shall use the
same crypt filter as the embedded file (EF).

o Adobe Systems Incorporated 2008 — All rights reserved 67

PDF 32000-1:2008

A value of None for the CFM entry in the crypt filter dictionary allows the security handler to do its own
decryption. This allows the handler to tightly control key management and use any preferred symmetric-key
cryptographic algorithm.

Table 25 — Entries common to all crypt filter dictionaries

Key Type Value
Type name (Optional) If present, shall be CryptFilter for a crypt filter dictionary.
CFM name (Optional) The method used, if any, by the conforming reader to

decrypt data. The following values shall be supported:

None The application shall not decrypt data but shall direct the
input stream to the security handler for decryption.

V2 The application shall ask the security handler for the
encryption key and shall implicitly decrypt data with
"Algorithm 1: Encryption of data using the RC4 or AES
algorithms", using the RC4 algorithm.

AESV2 (PDF 1.6) The application shall ask the security handler for
the encryption key and shall implicitly decrypt data with
"Algorithm 1: Encryption of data using the RC4 or AES
algorithms”, using the AES algorithm in Cipher Block
Chaining (CBC) mode with a 16-byte block size and an
initialization vector that shall be randomly generated and
placed as the first 16 bytes in the stream or string.

When the value is V2 or AESV2, the application may ask once for this
encryption key and cache the key for subsequent use for streams that
use the same crypt filter. Therefore, there shall be a one-to-one
relationship between a crypt filter name and the corresponding
encryption key.

Only the values listed here shall be supported. Applications that
encounter other values shall report that the file is encrypted with an
unsupported algorithm.

Default value: None.

AuthEvent name (Optional) The event to be used to trigger the authorization that is
required to access encryption keys used by this filter. If authorization
fails, the event shall fail. Valid values shall be:

DocOpen: Authorization shall be required when a document is
opened.

EFOpen: Authorization shall be required when accessing
embedded files.

Default value: DocOpen.

If this filter is used as the value of StrF or StmF in the encryption
dictionary (see Table 20), the conforming reader shall ignore this key
and behave as if the value is DocOpen.

Length integer (Optional) The bit length of the encryption key. It shall be a multiple of
8 in the range of 40 to 128.

Security handlers may define their own use of the Length entry and
should use it to define the bit length of the encryption key. Standard
security handler expresses the length in multiples of 8 (16 means 128)
and public-key security handler expresses it as is (128 means 128).

68 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Security handlers may add their own private data to crypt filter dictionaries. Names for private data entries shall
conform to the PDF name registry (see Annex E).

Table 26 — Standard crypt filter names

Name Description

Identity Input data shall be passed through without any processing.

Table 27 lists the additional crypt filter dictionary entries used by public-key security handlers (see 7.6.4,
"Public-Key Security Handlers"). When these entries are present, the value of CFM shall be V2 or AESV2.

Table 27 — Additional crypt filter dictionary entries for public-key security handlers

Key Type Value
Recipients array or (Required) If the crypt filter is referenced from StmF or StrF in the
string encryption dictionary, this entry shall be an array of byte strings, where

each string shall be a binary-encoded PKCS#7 object that shall list
recipients that have been granted equal access rights to the
document. The enveloped data contained in the PKCS#7 object shall
include both a 20-byte seed value that shall be used to compute the
encryption key (see 7.6.4.3, "Public-Key Encryption Algorithms")
followed by 4 bytes of permissions settings (see Table 22) that shall
apply to the recipient list. There shall be only one object per unique set
of access permissions. If a recipient appears in more than one list, the
permissions used shall be those in the first matching list.

If the crypt filter is referenced from a Crypt filter decode parameter
dictionary (see Table 14), this entry shall be a string that shall be a
binary-encoded PKCS#7 object shall contain a list of all recipients who
are permitted to access the corresponding encrypted stream. The
enveloped data contained in the PKCS#7 object shall be a 20-byte
seed value that shall be used to create the encryption key that shall be
used by the algorithm in "Algorithm 1: Encryption of data using the
RC4 or AES algorithms".

EncryptMetadata | boolean (Optional; used only by crypt filters that are referenced from StmF in
an encryption dictionary) Indicates whether the document-level
metadata stream (see 14.3.2, "Metadata Streams") shall be encrypted.
Conforming readers shall respect this value when determining whether
metadata shall be encrypted. The value of the EncryptMetadata entry
is set by the security handler rather than the conforming reader.

Default value: true.

EXAMPLE The following shows the use of crypt filters in an encrypted document containing a plaintext document-
level metadata stream. The metadata stream is left as is by applying the Identity crypt filter. The
remaining streams and strings are decrypted using the default filters.

%PDF-1.5
10 obj % Document catalog
<< [Type /Catalog
/Pages 20 R
/Metadata 6 0 R
>>
endobj
2 0 obj % Page tree
<< [Type /Pages
/Kids [3 0 R]
/Count 1
>>
endobj
30 obj % 1s t page
<< [Type /Page

o Adobe Systems Incorporated 2008 — All rights reserved 69

PDF 32000-1:2008

/Parent20 R
/MediaBox [0 0 612 792]
/Contents 40 R
>>
endobj
4 0 obj
<</Length 35 >>
stream

% Page contents

*** Encrypted Page-marking operators ***

endstream
endobj
50 obj
<< [Title ($#*#%*$SH &#H#) >>
endobj
6 0 obj
<< [Type /Metadata
/Subtype /XML
/Length 15
[Filter [/Crypt]
/DecodeParms

/Name /ldentity
>>
>>
stream
XML metadata
endstream
endobj
8 0 obj
<< /[Filter IMySecurityHandlerName
NV 4
ICF
<< /MyFilter0
<< [Type [CryptFilter
ICFM V2 >>
>>
/StrF /MyFilterO
/StmF /MyFilterO

/MyUnsecureKey (12345678)
/EncryptMetadata false
>>
endobj
xref

trailer
<< /Size 8
/Root10R
/Info50R
[Encrypt 8 0 R
>>
startxref
495
%%EOF

7.7 Document Structure

7.7.1 General

A PDF document can be regarded as a hierarchy of objects contained in the body section of a PDF file. At the

% Info dictionary: encrypted text string

% Uses a crypt filter
% with these parameters
<< [Type /CryptFilterDecodeParms

% Indicates no encryption

% Unencrypted metadata

% Encryption dictionary
% Version 4: allow crypt filters
% List of crypt filters
% Uses the standard algorithm
% Strings are decrypted using /MyFilterO

% Streams are decrypted using /MyFilterO
% Private data for /MySecurityHandlerName

root of the hierarchy is the document’s catalog dictionary (see 7.7.2, "Document Catalog").

NOTE

70 o Adobe Systems Incorporated 2008 — All rights reserved

Most of the objects in the hierarchy are dictionaries. Figure 5 illustrates the structure of the object hierarchy.

PDF 32000-1:2008

EXAMPLE Each page of the document is represented by a page object—a dictionary that includes references to the
page’s contents and other attributes, such as its thumbnail image (12.3.4, "Thumbnail Images") and any
annotations (12.5, "Annotations") associated with it. The individual page objects are tied together in a
structure called the page tree (described in 7.7.3, "Page Tree"), which in turn is specified by an indirect
reference in the document catalog. Parent, child, and sibling relationships within the hierarchy are defined
by dictionary entries whose values are indirect references to other dictionaries.

The data structures described in this sub-clause, particularly the Catalog and Page dictionaries, combine
entries describing document structure with ones dealing with the detailed semantics of documents and pages.
All entries are listed here, but many of their descriptions are deferred to subsequent sub-clauses.

7.7.2 Document Catalog

The root of a document’s object hierarchy is the catalog dictionary, located by means of the Root entry in the
trailer of the PDF file (see 7.5.5, "File Trailer"). The catalog contains references to other objects defining the
document’s contents, outline, article threads, named destinations, and other attributes. In addition, it contains
information about how the document shall be displayed on the screen, such as whether its outline and
thumbnail page images shall be displayed automatically and whether some location other than the first page
shall be shown when the document is opened. Table 28 shows the entries in the catalog dictionary.

o Adobe Systems Incorporated 2008 — All rights reserved 71

PDF 32000-1:2008

Content
stream
Page Th_umbnail
image
P . Annotations
age
tree .
Page S
Outline
entry
Outline *
hierarchy °
Outline
entry
Document catalog — i
Thread Bead
Article :
threads ° I
Bead
Thread F————————— ¢
Named
destinations
Interactive
form

Figure 5 — Structure of a PDF document

72 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 28 — Entries in the catalog dictionary

Key

Type

Value

Type

name

(Required) The type of PDF object that this dictionary describes;
shall be Catalog for the catalog dictionary.

Version

name

(Optional; PDF 1.4) The version of the PDF specification to which
the document conforms (for example, 1.4) if later than the version
specified in the file’'s header (see 7.5.2, "File Header"). If the
header specifies a later version, or if this entry is absent, the
document shall conform to the version specified in the header.
This entry enables a conforming writer to update the version using
an incremental update; see 7.5.6, "Incremental Updates."

The value of this entry shall be a name object, not a number, and
therefore shall be preceded by a SOLIDUS (2Fh) character (/)
when written in the PDF file (for example, /1.4).

Extensions

dictionary

(Optional; 1SO 32000) An extensions dictionary containing
developer prefix identification and version numbers for developer
extensions that occur in this document. 7.12, “Extensions
Dictionary”, describes this dictionary and how it shall be used.

Pages

dictionary

(Required; shall be an indirect reference) The page tree node that
shall be the root of the document’s page tree (see 7.7.3, "Page
Tree").

PageLabels

number tree

(Optional; PDF 1.3) A number tree (see 7.9.7, "Number Trees")
defining the page labelling for the document. The keys in this tree
shall be page indices; the corresponding values shall be page
label dictionaries (see 12.4.2, "Page Labels"). Each page index
shall denote the first page in a labelling range to which the
specified page label dictionary applies. The tree shall include a
value for page index 0.

Names

dictionary

(Optional; PDF 1.2) The document’s name dictionary (see 7.7.4,
"Name Dictionary").

Dests

dictionary

(Optional; PDF 1.1; shall be an indirect reference) A dictionary of
names and corresponding destinations (see 12.3.2.3, "Named
Destinations").

ViewerPreferences

dictionary

(Optional; PDF 1.2) A viewer preferences dictionary (see 12.2,
"Viewer Preferences") specifying the way the document shall be
displayed on the screen. If this entry is absent, conforming
readers shall use their own current user preference settings.

PagelLayout

name

(Optional) A name object specifying the page layout shall be used
when the document is opened:

SinglePage Display one page at a time
OneColumn Display the pages in one column

TwoColumnLeft Display the pages in two columns, with odd-
numbered pages on the left

TwoColumnRight Display the pages in two columns, with odd-
numbered pages on the right

(PDF 1.5) Display the pages two at a time,
with odd-numbered pages on the left

(PDF 1.5) Display the pages two at a time,
with odd-numbered pages on the right

Default value: SinglePage.

TwoPageLeft

TwoPageRight

o Adobe Systems Incorporated 2008 — All rights reserved

73

PDF 32000-1:2008

Table 28 — Entries in the catalog dictionary (continued)

Key Type Value
PageMode name (Optional) A name object specifying how the document shall be
displayed when opened:
UseNone Neither document outline nor thumbnail
images visible
UseOutlines Document outline visible
UseThumbs Thumbnail images visible
FullScreen Full-screen mode, with no menu bar, window
controls, or any other window visible
UseOC (PDF 1.5) Optional content group panel visible

UseAttachments (PDF 1.6) Attachments panel visible
Default value: UseNone.

Qutlines dictionary (Optional; shall be an indirect reference) The outline dictionary
that shall be the root of the document’s outline hierarchy (see
12.3.3, "Document Outline").

Threads array (Optional; PDF 1.1; shall be an indirect reference) An array of
thread dictionaries that shall represent the document's article
threads (see 12.4.3, "Articles").

OpenAction array or (Optional; PDF 1.1) A value specifying a destination that shall be
dictionary displayed or an action that shall be performed when the document
is opened. The value shall be either an array defining a
destination (see 12.3.2, "Destinations") or an action dictionary
representing an action (12.6, "Actions"). If this entry is absent, the
document shall be opened to the top of the first page at the default
magpnification factor.

AA dictionary (Optional; PDF 1.4) An additional-actions dictionary defining the
actions that shall be taken in response to various trigger events
affecting the document as a whole (see 12.6.3, "Trigger Events").

URI dictionary (Optional; PDF 1.1) A URI dictionary containing document-level
information for URI (uniform resource identifier) actions (see
12.6.4.7, "URI Actions").

AcroForm dictionary (Optional; PDF 1.2) The document’s interactive form (AcroForm)
dictionary (see 12.7.2, "Interactive Form Dictionary").

Metadata stream (Optional; PDF 1.4; shall be an indirect reference) A metadata
stream that shall contain metadata for the document (see 14.3.2,
"Metadata Streams").

StructTreeRoot dictionary (Optional; PDF 1.3) The document’s structure tree root dictionary
(see 14.7.2, "Structure Hierarchy").

MarklInfo dictionary (Optional; PDF 1.4) A mark information dictionary that shall
contain information about the document’s usage of Tagged PDF
conventions (see 14.7, "Logical Structure").

Lang text string (Optional; PDF 1.4) A language identifier that shall specify the
natural language for all text in the document except where
overridden by language specifications for structure elements or
marked content (see 14.9.2, "Natural Language Specification"). If
this entry is absent, the language shall be considered unknown.

Spiderinfo dictionary (Optional; PDF 1.3) A Web Capture information dictionary that
shall contain state information used by any Web Capture
extension (see 14.10.2, "Web Capture Information Dictionary").

74 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 28 — Entries in the catalog dictionary (continued)

Key Type Value

Outputintents array (Optional; PDF 1.4) An array of output intent dictionaries that shall
specify the colour characteristics of output devices on which the
document might be rendered (see 14.11.5, "Output Intents").

Piecelnfo dictionary (Optional; PDF 1.4) A page-piece dictionary associated with the
document (see 14.5, "Page-Piece Dictionaries").

OCProperties dictionary (Optional; PDF 1.5; required if a document contains optional
content) The document’s optional content properties dictionary
(see 8.11.4, "Configuring Optional Content").

Perms dictionary (Optional; PDF 1.5) A permissions dictionary that shall specify
user access permissions for the document. 12.8.4, "Permissions",
describes this dictionary and how it shall be used.

Legal dictionary (Optional; PDF 1.5) A dictionary that shall contain attestations
regarding the content of a PDF document, as it relates to the
legality of digital signatures (see 12.8.5, "Legal Content
Attestations").

Requirements array (Optional; PDF 1.7) An array of requirement dictionaries that shall
represent requirements for the document. 12.10, "Document
Requirements", describes this dictionary and how it shall be used.

Collection dictionary (Optional; PDF 1.7) A collection dictionary that a conforming
reader shall use to enhance the presentation of file attachments
stored in the PDF document. (see 12.3.5, "Collections").

NeedsRendering boolean (Optional; PDF 1.7) A flag used to expedite the display of PDF
documents containing XFA forms. It specifies whether the
document shall be regenerated when the document is first
opened.

See the XML Forms Architecture (XFA) Specification
(Bibliography).
Default value: false.

EXAMPLE The following shows a sample catalog object.

1 0 obj
<< [Type /Catalog
/Pages 20R
/PageMode /UseOutlines
/Outlines 30R
>>

endobj
7.7.3 Page Tree

7.7.3.1 General

The pages of a document are accessed through a structure known as the page tree, which defines the ordering
of pages in the document. Using the tree structure, conforming readers using only limited memory, can quickly
open a document containing thousands of pages. The tree contains nodes of two types—intermediate nodes,
called page tree nodes, and leaf nodes, called page objects—whose form is described in the subsequent sub-
clauses. Conforming products shall be prepared to handle any form of tree structure built of such nodes.

NOTE The simplest structure can consist of a single page tree node that references all of the document’'s page
objects directly. However, to optimize application performance, a conforming writer can construct trees of a
particular form, known as balanced trees. Further information on this form of tree can be found in Data
Structures and Algorithms, by Aho, Hopcroft, and Uliman (see the Bibliography).

o Adobe Systems Incorporated 2008 — All rights reserved 75

PDF 32000-1:2008

7.7.3.2 Page Tree Nodes

Table 29 shows the entries in a page tree node that shall always be present (Required).

Table 29 — Required entries in a page tree node

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be
Pages for a page tree node.

Parent dictionary (Required except in root node; prohibited in the root node; shall be an
indirect reference) The page tree node that is the immediate parent of this
one.

Kids array (Required) An array of indirect references to the immediate children of this
node. The children shall only be page objects or other page tree nodes.

Count integer (Required) The number of leaf nodes (page objects) that are descendants of
this node within the page tree.

NOTE The structure of the page tree is not necessarily related to the logical structure of the document; that is, page

tree nodes do not represent chapters, sections, and so forth. Other data structures are defined for this
purpose; see 14.7, "Logical Structure".

Conforming products shall not be required to preserve the existing structure of the page tree.

EXAMPLE

The following illustrates the page tree for a document with three pages. See 7.7.3.3, "Page Objects," for
the contents of the individual page objects, and H.5, "Page Tree Example", for a more extended example
showing the page tree for a longer document.

2 0 obj
<< [Type /Pages
/Kids [40R
100R
240R
]
/Count 3
>>

endobj

4 0 obj
<< [Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

10 0 obj
<< [Type /Page
...Additional entries describing the attributes of this page...
>>

endobj

24 0 obj
<< [Type /Page
...Additional entries describing the attributes of this page...
>>

endobj

In addition to the entries shown in Table 29, a page tree node may contain further entries defining inherited
attributes for the page objects that are its descendants (see 7.7.3.4, "Inheritance of Page Attributes™).

76

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

7.7.3.3 Page Objects

The leaves of the page tree are page objects, each of which is a dictionary specifying the attributes of a single
page of the document. Table 30 shows the contents of this dictionary. The table also identifies which attributes
a page may inherit from its ancestor nodes in the page tree, as described under 7.7.3.4, "Inheritance of Page
Attributes." Attributes that are not explicitly identified in the table as inheritable shall not be inherited.

Table 30 — Entries in a page object

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes;
shall be Page for a page object.

Parent dictionary (Required; shall be an indirect reference) The page tree node that
is the immediate parent of this page object.

LastModified date (Required if Piecelnfo is present; optional otherwise; PDF 1.3) The
date and time (see 7.9.4, "Dates") when the page’s contents were
most recently modified. If a page-piece dictionary (Piecelnfo) is
present, the modification date shall be used to ascertain which of
the application data dictionaries that it contains correspond to the
current content of the page (see 14.5, "Page-Piece Dictionaries").

Resources dictionary (Required; inheritable) A dictionary containing any resources
required by the page (see 7.8.3, "Resource Dictionaries"). If the
page requires no resources, the value of this entry shall be an
empty dictionary. Omitting the entry entirely indicates that the
resources shall be inherited from an ancestor node in the page tree.

MediaBox rectangle (Required; inheritable) A rectangle (see 7.9.5, "Rectangles"),
expressed in default user space units, that shall define the
boundaries of the physical medium on which the page shall be
displayed or printed (see 14.11.2, "Page Boundaries").

CropBox rectangle (Optional; inheritable) A rectangle, expressed in default user space
units, that shall define the visible region of default user space.
When the page is displayed or printed, its contents shall be clipped
(cropped) to this rectangle and then shall be imposed on the output
medium in some implementation-defined manner (see 14.11.2,
"Page Boundaries"). Default value: the value of MediaBox.

BleedBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space
units, that shall define the region to which the contents of the page
shall be clipped when output in a production environment (see
14.11.2, "Page Boundaries"). Default value: the value of CropBox.

TrimBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space
units, that shall define the intended dimensions of the finished page
after trimming (see 14.11.2, "Page Boundaries"). Default value: the
value of CropBox.

ArtBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space
units, that shall define the extent of the page’s meaningful content
(including potential white space) as intended by the page’s creator
(see 14.11.2, "Page Boundaries"). Default value: the value of
CropBox.

BoxColorinfo dictionary (Optional; PDF 1.4) A box colour information dictionary that shall
specify the colours and other visual characteristics that should be
used in displaying guidelines on the screen for the various page
boundaries (see 14.11.2.2, "Display of Page Boundaries"). If this
entry is absent, the application shall use its own current default
settings.

o Adobe Systems Incorporated 2008 — All rights reserved 77

PDF 32000-1:2008

78

Table 30 — Entries in a page object (continued)

Key

Type

Value

Contents

stream or array

(Optional) A content stream (see 7.8.2, "Content Streams") that
shall describe the contents of this page. If this entry is absent, the
page shall be empty.

The value shall be either a single stream or an array of streams. If
the value is an array, the effect shall be as if all of the streams in the
array were concatenated, in order, to form a single stream.
Conforming writers can create image objects and other resources
as they occur, even though they interrupt the content stream. The
division between streams may occur only at the boundaries
between lexical tokens (see 7.2, "Lexical Conventions") but shall be
unrelated to the page’s logical content or organization. Applications
that consume or produce PDF files need not preserve the existing
structure of the Contents array. Conforming writers shall not create
a Contents array containing no elements.

Rotate

integer

(Optional; inheritable) The number of degrees by which the page
shall be rotated clockwise when displayed or printed. The value
shall be a multiple of 90. Default value: 0.

Group

dictionary

(Optional; PDF 1.4) A group attributes dictionary that shall specify
the attributes of the page’s page group for use in the transparent
imaging model (see 11.4.7, "Page Group" and 11.6.6,
"Transparency Group XObjects").

Thumb

stream

(Optional) A stream object that shall define the page’s thumbnail
image (see 12.3.4, "Thumbnail Images").

array

(Optional; PDF 1.1; recommended if the page contains article
beads) An array that shall contain indirect references to all article
beads appearing on the page (see 12.4.3, "Articles"). The beads
shall be listed in the array in natural reading order.

NOTE The information in this entry can be created or
recreated from the information obtained from the
Threads key in the Catalog.

Dur

number

(Optional; PDF 1.1) The page’s display duration (also called its
advance timing): the maximum length of time, in seconds, that the
page shall be displayed during presentations before the viewer
application shall automatically advance to the next page (see
12.4.4, "Presentations”). By default, the viewer shall not advance
automatically.

Trans

dictionary

(Optional; PDF 1.1) A transition dictionary describing the transition
effect that shall be used when displaying the page during
presentations (see 12.4.4, "Presentations").

Annots

array

(Optional) An array of annotation dictionaries that shall contain
indirect references to all annotations associated with the page (see
12.5, "Annotations").

AA

dictionary

(Optional; PDF 1.2) An additional-actions dictionary that shall
define actions to be performed when the page is opened or closed
(see 12.6.3, "Trigger Events").

(PDF 1.3) additional-actions dictionaries are not inheritable.

Metadata

stream

(Optional; PDF 1.4) A metadata stream that shall contain metadata
for the page (see 14.3.2, "Metadata Streams").

Piecelnfo

dictionary

(Optional; PDF 1.3) A page-piece dictionary associated with the
page (see 14.5, "Page-Piece Dictionaries").

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 30 — Entries in a page object (continued)

Key Type

Value

StructParents integer

(Required if the page contains structural content items; PDF 1.3)
The integer key of the page’s entry in the structural parent tree (see
14.7.4.4, "Finding Structure Elements from Content Iltems").

ID byte string

(Optional; PDF 1.3; indirect reference preferred) The digital
identifier of the page’'s parent Web Capture content set (see
14.10.6, "Object Attributes Related to Web Capture").

Pz number

(Optional; PDF 1.3) The page’s preferred zoom (magnification)
factor: the factor by which it shall be scaled to achieve the natural
display magnification (see 14.10.6, "Object Attributes Related to
Web Capture").

Separationinfo dictionary

(Optional; PDF 1.3) A separation dictionary that shall contain
information needed to generate colour separations for the page
(see 14.11.4, "Separation Dictionaries").

Tabs name

(Optional; PDF 1.5) A name specifying the tab order that shall be
used for annotations on the page. The possible values shall be R
(row order), C (column order), and S (structure order). See 12.5,
"Annotations" for details.

Templatelnstantiated | name

(Required if this page was created from a named page object; PDF
1.5) The name of the originating page object (see 12.7.6, "Named
Pages").

PresSteps dictionary

(Optional; PDF 1.5) A navigation node dictionary that shall
represent the first node on the page (see 12.4.4.2, "Sub-page
Navigation").

UserUnit number

(Optional; PDF 1.6) A positive number that shall give the size of
default user space units, in multiples of /72 inch. The range of
supported values shall be implementation-dependent.

Default value: 1.0 (user space unit is /72 inch).

VP dictionary

(Optional; PDF 1.6) An array of viewport dictionaries (see
Table 260) that shall specify rectangular regions of the page.

EXAMPLE

The following shows the definition of a page object with a thumbnail image and two annotations. The

media box specifies that the page is to be printed on letter-size paper. In addition, the resource dictionary
is specified as a direct object and shows that the page makes use of three fonts named F3, F5, and F7.

3 0 obj
<< [Type /Page
/Parent 40 R

/MediaBox [0 0 612 792]
/Resources << /Font << /[F3 70R

/F5 90R
/[F7 110R

>>

/ProcSet [/PDF]

>>
/Contents 120 R
/Thumb 140R
/Annots [230R
240R

]

>>
endobj

o Adobe Systems Incorporated 2008 — All rights reserved

79

PDF 32000-1:2008

7.7.3.4 Inheritance of Page Attributes

Some of the page attributes shown in Table 30 are designated as inheritable. If such an attribute is omitted from
a page obiject, its value shall be inherited from an ancestor node in the page tree. If the attribute is a required
one, a value shall be supplied in an ancestor node. If the attribute is optional and no inherited value is specified,
the default value shall be used.

An attribute can thus be defined once for a whole set of pages by specifying it in an intermediate page tree
node and arranging the pages that share the attribute as descendants of that node.

EXAMPLE A document may specify the same media box for all of its pages by including a MediaBox entry in the root
node of the page tree. If necessary, an individual page object may override this inherited value with a
MediaBox entry of its own.

In a document conforming to the Linearized PDF organization (see Annex F), all page attributes shall be
specified explicitly as entries in the page dictionaries to which they apply; they shall not be inherited from an
ancestor node.

Figure 6 illustrates the inheritance of attributes. In the page tree shown, pages 1, 2, and 4 are rotated clockwise
by 90 degrees, page 3 by 270 degrees, page 6 by 180 degrees, and pages 5 and 7 not at all (O degrees).

Pages

Pages
/Rotate 90

T

Pages

Pages
/Rotate 180

e

Page Page Pages Page Page Page
/Rotate 0
Page 1 Page 2 Page 5 Page 6 Page 7

Page Page
/Rotate 270 /Rotate 90
Page 3 Page 4

Figure 6 — Inheritance of attributes

7.7.4 Name Dictionary

Some categories of objects in a PDF file can be referred to by name rather than by object reference. The
correspondence between names and objects is established by the document’s name dictionary (PDF 1.2),
located by means of the Names entry in the document’s catalog (see 7.7.2, "Document Catalog"). Each entry in
this dictionary designates the root of a name tree (see 7.9.6, "Name Trees") defining names for a particular
category of objects. Table 31 shows the contents of the name dictionary.

Table 31 — Entries in the name dictionary

Key Type Value

Dests name tree | (Optional; PDF 1.2) A name tree mapping hame strings to
destinations (see 12.3.2.3, "Named Destinations").

AP name tree | (Optional; PDF 1.3) A name tree mapping hame strings to
annotation appearance streams (see 12.5.5, "Appearance
Streams").

80 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 31 — Entries in the name dictionary (continued)

Key Type Value

JavaScript name tree | (Optional; PDF 1.3) A name tree mapping name strings to
document-level JavaScript actions (see 12.6.4.16, "JavaScript
Actions").

Pages name tree | (Optional; PDF 1.3) A name tree mapping name strings to visible

pages for use in interactive forms (see 12.7.6, "Named Pages").

Templates name tree | (Optional; PDF 1.3) A name tree mapping name strings to invisible
(template) pages for use in interactive forms (see 12.7.6, "Named
Pages").

IDS name tree | (Optional; PDF 1.3) A name tree mapping digital identifiers to Web

Capture content sets (see 14.10.4, "Content Sets").

URLS name tree | (Optional; PDF 1.3) A name tree mapping uniform resource locators
(URLs) to Web Capture content sets (see 14.10.4, "Content Sets").

EmbeddedFiles name tree | (Optional; PDF 1.4) A name tree mapping name strings to file
specifications for embedded file streams (see 7.11.4, "Embedded
File Streams").

AlternatePresentations name tree | (Optional; PDF 1.4) A name tree mapping name strings to alternate
presentations (see 13.5, "Alternate Presentations").

Renditions name tree | (Optional; PDF 1.5) A name tree mapping name strings (which shall
have Unicode encoding) to rendition objects (see 13.2.3,
"Renditions").

7.8 Content Streams and Resources

7.8.1 General

Content streams are the primary means for describing the appearance of pages and other graphical elements.
A content stream depends on information contained in an associated resource dictionary; in combination, these
two objects form a self-contained entity. This sub-clause describes these objects.

7.8.2 Content Streams

A content stream is a PDF stream object whose data consists of a sequence of instructions describing the
graphical elements to be painted on a page. The instructions shall be represented in the form of PDF objects,
using the same object syntax as in the rest of the PDF document. However, whereas the document as a whole
is a static, random-access data structure, the objects in the content stream shall be interpreted and acted upon
sequentially.

Each page of a document shall be represented by one or more content streams. Content streams shall also be
used to package sequences of instructions as self-contained graphical elements, such as forms (see 8.10,
"Form XObjects"), patterns (8.7, "Patterns"), certain fonts (9.6.5, "Type 3 Fonts"), and annotation appearances
(12.5.5, "Appearance Streams").

A content stream, after decoding with any specified filters, shall be interpreted according to the PDF syntax
rules described in 7.2, "Lexical Conventions." It consists of PDF objects denoting operands and operators. The
operands needed by an operator shall precede it in the stream. See EXAMPLE 4 in 7.4, "Filters," for an
example of a content stream.

An operand is a direct object belonging to any of the basic PDF data types except a stream. Dictionaries shall

be permitted as operands only by certain specific operators. Indirect objects and object references shall not be
permitted at all.

o Adobe Systems Incorporated 2008 — All rights reserved 81

PDF 32000-1:2008

An operator is a PDF keyword specifying some action that shall be performed, such as painting a graphical
shape on the page. An operator keyword shall be distinguished from a name object by the absence of an initial
SOLIDUS character (2Fh) (/). Operators shall be meaningful only inside a content stream.

NOTE 1 This postfix notation, in which an operator is preceded by its operands, is superficially the same as in the
PostScript language. However, PDF has no concept of an operand stack as PostScript has.

In PDF, all of the operands needed by an operator shall immediately precede that operator. Operators do not
return results, and operands shall not be left over when an operator finishes execution.

NOTE 2 Most operators have to do with painting graphical elements on the page or with specifying parameters that
affect subsequent painting operations. The individual operators are described in the clauses devoted to their
functions:

Clause 8, "Graphics" describes operators that paint general graphics, such as filled areas, strokes, and
sampled images, and that specify device-independent graphical parameters, such as colour.

Clause 9, "Text" describes operators that paint text using character glyphs defined in fonts.
Clause 10, "Rendering" describes operators that specify device-dependent rendering parameters.

Clause 14, "Document Interchange” describes the marked-content operators that associate higher-level logical
information with objects in the content stream. These operators do not affect the rendered appearance of the
content; they specify information useful to applications that use PDF for document interchange.

Ordinarily, when a conforming reader encounters an operator in a content stream that it does not recognize, an
error shall occur. A pair of compatibility operators, BX and EX (PDF 1.1), shall modify this behaviour (see
Table 32). These operators shall occur in pairs and may be nested. They bracket a compatibility section, a
portion of a content stream within which unrecognized operators shall be ignored without error. This
mechanism enables a conforming writer to use operators defined in later versions of PDF without sacrificing
compatibility with older applications. It should be used only in cases where ignoring such newer operators is the
appropriate thing to do. The BX and EX operators are not themselves part of any graphics object (see 8.2,
"Graphics Objects") or of the graphics state (8.4, "Graphics State").

Table 32 — Compatibility operators

Operands | Operator Description

— BX (PDF 1.1) Begin a compatibility section. Unrecognized operators (along with
their operands) shall be ignored without error until the balancing EX operator
is encountered.

— EX (PDF 1.1) End a compatibility section begun by a balancing BX operator.
Ignore any unrecognized operands and operators from previous matching
BX onward.

7.8.3 Resource Dictionaries

As stated above, the operands supplied to operators in a content stream shall only be direct objects; indirect
objects and object references shall not be permitted. In some cases, an operator shall refer to a PDF object
that is defined outside the content stream, such as a font dictionary or a stream containing image data. This
shall be accomplished by defining such objects as named resources and referring to them by name from within
the content stream.

Named resources shall be meaningful only in the context of a content stream. The scope of a resource name
shall be local to a particular content stream and shall be unrelated to externally known identifiers for objects
such as fonts. References from one object outside of content streams to another outside of content streams
shall be made by means of indirect object references rather than named resources.

82 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

A content stream’s named resources shall be defined by a resource dictionary, which shall enumerate the
named resources needed by the operators in the content stream and the names by which they can be referred
to.

EXAMPLE 1 If a text operator appearing within the content stream needs a certain font, the content stream’s resource
dictionary can associate the name F42 with the corresponding font dictionary. The text operator can use
this name to refer to the font.

A resource dictionary shall be associated with a content stream in one of the following ways:

» For a content stream that is the value of a page’s Contents entry (or is an element of an array that is the
value of that entry), the resource dictionary shall be designated by the page dictionary’s Resources or is
inherited, as described under 7.7.3.4, "Inheritance of Page Attributes,” from some ancestor node of the
page object.

« For other content streams, a conforming writer shall include a Resources entry in the stream's dictionary
specifying the resource dictionary which contains all the resources used by that content stream. This shall
apply to content streams that define form XObjects, patterns, Type 3 fonts, and annotation.

 PDF files written obeying earlier versions of PDF may have omitted the Resources entry in all form
XObjects and Type 3 fonts used on a page. All resources that are referenced from those forms and fonts
shall be inherited from the resource dictionary of the page on which they are used. This construct is
obsolete and should not be used by conforming writers.

In the context of a given content stream, the term current resource dictionary refers to the resource dictionary
associated with the stream in one of the ways described above.

Each key in a resource dictionary shall be the name of a resource type, as shown in Table 33. The
corresponding values shall be as follows:

» Forresource type ProcSet, the value shall be an array of procedure set names

« For all other resource types, the value shall be a subdictionary. Each key in the subdictionary shall be the
name of a specific resource, and the corresponding value shall be a PDF object associated with the name.

Table 33 — Entries in a resource dictionary

Key Type Value

ExtGState dictionary (Optional) A dictionary that maps resource names to graphics state
parameter dictionaries (see 8.4.5, "Graphics State Parameter
Dictionaries").

ColorSpace dictionary (Optional) A dictionary that maps each resource name to either the
name of a device-dependent colour space or an array describing a
colour space (see 8.6, "Colour Spaces").

Pattern dictionary (Optional) A dictionary that maps resource names to pattern objects
(see 8.7, "Patterns").

Shading dictionary (Optional; PDF 1.3) A dictionary that maps resource names to shading
dictionaries (see 8.7.4.3, "Shading Dictionaries").

XObject dictionary (Optional) A dictionary that maps resource names to external objects
(see 8.8, "External Objects").

Font dictionary (Optional) A dictionary that maps resource names to font dictionaries
(see clause 9, "Text").

ProcSet array (Optional) An array of predefined procedure set names (see 14.2,
"Procedure Sets").

o Adobe Systems Incorporated 2008 — All rights reserved 83

PDF 32000-1:2008

Table 33 — Entries in aresource dictionary (continued)

Key Type Value

Properties dictionary (Optional; PDF 1.2) A dictionary that maps resource names to property
list dictionaries for marked content (see 14.6.2, "Property Lists").

EXAMPLE 2 The following shows a resource dictionary containing procedure sets, fonts, and external objects. The
procedure sets are specified by an array, as described in 14.2, "Procedure Sets". The fonts are specified
with a subdictionary associating the names F5, F6, F7, and F8 with objects 6, 8, 10, and 12, respectively.
Likewise, the XObject subdictionary associates the names Iml and Im2 with objects 13 and 15,
respectively.

<</ProcSet [/PDF /ImageB]
/[Font << /F5 60R
/F6 80R
/F7 100R
/F8 120R
>>
/XObject << /Im1 130R
/Im2 150R
>>
>>

7.9 Common Data Structures

7.9.1 General

As mentioned at the beginning of this clause, there are some general-purpose data structures that are built
from the basic object types described in 7.3, "Objects," and are used in many places throughout PDF. This sub-
clause describes data structures for text strings, dates, rectangles, name trees, and number trees. More
complex data structures are described in 7.10, "Functions," and 7.11, "File Specifications."

All of these data structures are meaningful only as part of the document hierarchy; they may not appear within
content streams. In particular, the special conventions for interpreting the values of string objects apply only to
strings outside content streams. An entirely different convention is used within content streams for using strings
to select sequences of glyphs to be painted on the page (see clause 9, "Text"). Table 34 summarizes the basic
and higher-level data types that are used throughout this standard to describe the values of dictionary entries
and other PDF data values.

Table 34 — PDF data types

Type Description Sub-Clause

ASCII string Bytes containing ASCII characters 7.9.2
79.2.4

array Array object 7.3.6

boolean Boolean value 7.3.2

byte string A series of bytes that shall represent | 7.9.2

characters or other binary data. If such
a type represents characters, the
encoding shall be determined by the

context.
date Date (ASCII string) 7.9.4
dictionary Dictionary object 7.3.7
file specification File specification (string or dictionary) 7.11

84 o Adobe Systems Incorporated 2008 — All rights reserved

Table 34 — PDF data types (continued)

PDF 32000-1:2008

Type Description Sub-Clause
function Function (dictionary or stream) 7.10
integer Integer number
name Name object 7.35
name tree Name tree (dictionary) 7.9.6
null Null object 7.3.9
number Number (integer or real)
number tree Number tree (dictionary) 7.9.7
PDFDocEncoded string Bytes containing a string that shall be | 7.9.2
encoded using PDFDocEncoding
rectangle Rectangle (array) 7.9.5
stream Stream object 7.3.8
string Any string that is not a text string. 7.9.2
Beginning with PDF 1.7, this type is
further qualified as the types:
PDFDocEncoded string, ASCII string,
and byte string.
text string Bytes that represent characters that | 7.9.2.2
shall be encoded wusing either | 7.9.2
PDFDocEncoding or UTF-16BE with a
leading byte-order marker (as defined
in “Text String Type” on page 86.)
text stream Text stream 7.9.3

7.9.2 String Object Types

7.9.2.1 General

PDF supports one fundamental string object (see 7.3.4, "String Objects"). The string object shall be further
qualified as a text string, a PDFDocEncoded string, ASCII string, or byte string. The further qualification reflects

the encoding used to represent the characters or glyphs described by the string.

Table 35 summarizes the string object types that represent data encoded using specific conventions.

Table 35— String Object Types

Type Description

Shall be used for human-readable text, such as text
annotations, bookmark names, article names, and
document information. These strings shall be encoded
using either PDFDocEncoding or UTF-16BE with a
leading byte-order marker.

This type is described in 7.9.2.2, "Text String Type."

text string

PDFDocEncoded string Shall be used for characters and glyphs that are
represented in a single byte, using PDFDocEncoding.
This type is described in 7.9.2.3, "PDFDocEncoded String
Type."

o Adobe Systems Incorporated 2008 — All rights reserved 85

PDF 32000-1:2008

Table 35 — String Object Types (continued)

Type Description

ASCII string Shall be used for characters that are represented in a
single byte using ASCII encoding.

byte string Shall be used for binary data represented as a series of
bytes, where each byte can be any value representable in
8 bits. The string may represent characters but the
encoding is not known. The bytes of the string need not
represent characters. This type shall be used for data
such as MD5 hash values, signature certificates, and Web
Capture identification values.

This type is described in 7.9.2.4, "Byte String Type."

The string types described in Table 35 specify increasingly specific encoding schemes, as shown in Figure 7.

string types

text string ASCII string byte string
PDFDocEncoded UTF-16BE encoded string with
string a leading byte order marker

Figure 7 — Relationship between string types

7.9.2.2 Text String Type

The text string type shall be used for character strings that contain information intended to be human-readable,
such as text annotations, bookmark names, article names, document information, and so forth.

NOTE 1 Text string type is a subtype of string type and represents data encoded using specific conventions.

The text string type shall be used for character strings that shall be encoded in either PDFDocEncoding or the
UTF-16BE Unicode character encoding scheme. PDFDocEncoding can encode all of the ISO Latin 1
character set and is documented in Annex D. UTF-16BE can encode all Unicode characters. UTF-16BE and
Unicode character encoding are described in the Unicode Standard by the Unicode Consortium (see the
Bibliography).

NOTE 2 PDFDocEncoding does not support all Unicode characters whereas UTF-16BE does.

For text strings encoded in Unicode, the first two bytes shall be 254 followed by 255. These two bytes represent
the Unicode byte order marker, U+FEFF, indicating that the string is encoded in the UTF-16BE (big-endian)
encoding scheme specified in the Unicode standard.

NOTE 3 This mechanism precludes beginning a string using PDFDocEncoding with the two characters thorn
ydieresis, which is unlikely to be a meaningful beginning of a word or phrase.

Conforming readers that process PDF files containing Unicode text strings shall be prepared to handle
supplementary characters; that is, characters requiring more than two bytes to represent.

An escape sequence may appear anywhere in a Unicode text string to indicate the language in which
subsequent text shall be written.

86 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

NOTE 4 This is useful when the language cannot be determined from the character codes used in the text.
The escape sequence shall consist of the following elements, in order:

a) The Unicode value U+001B (that is, the byte sequence 0 followed by 27).

b) A 2- byte ISO 639 language code.

EXAMPLE en for English or ja for Japanese encoded as ASCII characters.

c) (Optional) A 2-byte ISO 3166 country code.

EXAMPLE US for the United States or JP for Japan.

d) The Unicode value U+001B.

NOTE 5 The complete list of codes defined by ISO 639 and ISO 3166 can be obtained from the International
Organization for Standardization (see the Bibliography).

7.9.2.3 PDFDocEncoded String Type

A PDFDocEncoded string is a character string in which the characters shall be represented in a single byte
using PDFDocEncoding.

NOTE PDFDocEncoding does not support all Unicode characters whereas UTF-16BE does.

7.9.2.4 Byte String Type

The byte string type shall be used for binary data that shall be represented as a series of bytes, where each
byte may be any value representable in 8 bits. Byte string type is a subtype of string type.

NOTE The string may represent characters but the encoding is not known. The bytes of the string may not represent
characters.

7.9.3 Text Streams
A text stream (PDF 1.5) shall be a PDF stream object (7.3.8, "Stream Objects") whose unencoded bytes shall

meet the same requirements as a text string (7.9.2.2, "Text String Type") with respect to encoding, byte order,
and lead bytes.

7.9.4 Dates
Date values used in a PDF shall conform to a standard date format, which closely follows that of the
international standard ASN.1 (Abstract Syntax Notation One), defined in ISO/IEC 8824. A date shall be a text
string of the form

(D:YYYYMMDDHHMMSSOHH'mm)
where:

YYYY shall be the year

MM shall be the month (01-12)

DD shall be the day (01-31)

HH shall be the hour (00-23)

o Adobe Systems Incorporated 2008 — All rights reserved 87

PDF 32000-1:2008

mm shall be the minute (00-59)
SS shall be the second (00-59)

O shall be the relationship of local time to Universal Time (UT), and shall be denoted by one of the
characters PLUS SIGN (U+002B) (+), HYPHEN-MINUS (U+002D) (-), or LATIN CAPITAL LETTER Z
(U+005A) (2) (see below)

HH followed by APOSTROPHE (U+0027) (') shall be the absolute value of the offset from UT in hours
(00-23)

mm shall be the absolute value of the offset from UT in minutes (00-59)

The prefix D: shall be present, the year field (YYYY) shall be present and all other fields may be present but
only if all of their preceding fields are also present. The APOSTROPHE following the hour offset field (HH) shall
only be present if the HH field is present. The minute offset field (mm) shall only be present if the
APOSTROPHE following the hour offset field (HH) is present. The default values for MM and DD shall be both
01; all other numerical fields shall default to zero values. A PLUS SIGN as the value of the O field signifies that
local time is later than UT, a HYPHEN-MINUS signifies that local time is earlier than UT, and the LATIN
CAPITAL LETTER Z signifies that local time is equal to UT. If no UT information is specified, the relationship of
the specified time to UT shall be considered to be GMT. Regardless of whether the time zone is specified, the
rest of the date shall be specified in local time.

EXAMPLE For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is represented by the string
D:199812231952-08'00

7.9.5 Rectangles

Rectangles are used to describe locations on a page and bounding boxes for a variety of objects. A rectangle
shall be written as an array of four numbers giving the coordinates of a pair of diagonally opposite corners.

NOTE Although rectangles are conventionally specified by their lower-left and upper-right corners, it is acceptable to
specify any two diagonally opposite corners. Applications that process PDF should be prepared to normalize
such rectangles in situations where specific corners are required.

Typically, the array takes the form

[l Ty ury ury]

specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates of the rectangle, in that
order. The other two corners of the rectangle are then assumed to have coordinates (ll,, ury) and (ury, lly).

7.9.6 Name Trees

A name tree serves a similar purpose to a dictionary—associating keys and values—but by different means. A
name tree differs from a dictionary in the following important ways:

* Unlike the keys in a dictionary, which are name objects, those in a name tree are strings.

e The keys are ordered.

* The values associated with the keys may be objects of any type. Stream objects shall be specified by
indirect object references (7.3.8, "Stream Objects"). The dictionary, array, and string objects should be
specified by indirect object references, and other PDF objects (nulls, numbers, booleans, and names)
should be specified as direct objects.

e The data structure can represent an arbitrarily large collection of key-value pairs, which can be looked up

efficiently without requiring the entire data structure to be read from the PDF file. (In contrast, a dictionary
can be subject to an implementation limit on the number of entries it can contain.)

88 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

A name tree shall be constructed of nodes, each of which shall be a dictionary object. Table 36 shows the
entries in a node dictionary. The nodes shall be of three kinds, depending on the specific entries they contain.
The tree shall always have exactly one root node, which shall contain a single entry: either Kids or Names but
not both. If the root node has a Names entry, it shall be the only node in the tree. If it has a Kids entry, each of
the remaining nodes shall be either an intermediate node, that shall contain a Limits entry and a Kids entry, or
a leaf node, that shall contain a Limits entry and a Names entry.

Table 36 — Entries in a name tree node dictionary

Key Type Value

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the
root node if and only if Names is not present) Shall be an array of indirect
references to the immediate children of this node. The children may be
intermediate or leaf nodes.

Names array (Root and leaf nodes only; required in leaf nodes; present in the root node if and
only if Kids is not present) Shall be an array of the form

[key, value; key, value, ... key, value,]

where each key; shall be a string and the corresponding value; shall be the object

associated with that key. The keys shall be sorted in lexical order, as described
below.

Limits array (Intermediate and leaf nodes only; required) Shall be an array of two strings, that
shall specify the (lexically) least and greatest keys included in the Names array of
a leaf node or in the Names arrays of any leaf nodes that are descendants of an
intermediate node.

The Kids entries in the root and intermediate nodes define the tree’s structure by identifying the immediate
children of each node. The Names entries in the leaf (or root) nodes shall contain the tree’s keys and their
associated values, arranged in key-value pairs and shall be sorted lexically in ascending order by key. Shorter
keys shall appear before longer ones beginning with the same byte sequence. Any encoding of the keys may
be used as long as it is self-consistent; keys shall be compared for equality on a simple byte-by-byte basis.

The keys contained within the various nodes’ Names entries shall not overlap; each Names entry shall contain
a single contiguous range of all the keys in the tree. In a leaf node, the Limits entry shall specify the least and
greatest keys contained within the node’'s Names entry. In an intermediate node, it shall specify the least and
greatest keys contained within the Names entries of any of that node’s descendants. The value associated with
a given key can thus be found by walking the tree in order, searching for the leaf node whose Names entry
contains that key.

EXAMPLE 1 The following is an abbreviated outline, showing object numbers and nodes, of a name tree that maps the
names of all the chemical elements, from actinium to zirconium, to their atomic numbers.

Example of a name tree
1. Root node
2: Intermediate node: Actinium to Gold
5: Leaf node: Actinium = 25, ..., Astatine = 31
25: Integer: 89

31: Integer: 85

11: Leaf node: Gadolinium = 56, ..., Gold = 59
56: Integer: 64

59: Integer: 79
3: Intermediate node: Hafnium to Protactinium
12: Leaf node: Hafnium = 60, ..., Hydrogen = 65
60: Integer: 72

65: Integer: 1

o Adobe Systems Incorporated 2008 — All rights reserved 89

PDF 32000-1:2008

19: Leaf node: Palladium = 92, ..., Protactinium = 100
92: Integer: 46

100:Integer: 91
4: Intermediate node: Radium to Zirconium
20: Leaf node: Radium = 101, ..., Ruthenium = 107
101:Integer: 89
107:Integer: 85

24: Leaf node: Xenon = 129, ..., Zirconium = 133
129:Integer: 54

133:Integer: 40

EXAMPLE 2 The following shows the representation of this tree in a PDF file

1 0 obj
<< /Kids [20R % Root node
30R
40R
]
>>
endobj
2 0 obj
<< /Limits [(Actinium) (Gold)] % Intermediate node
/IKids [50R
60R
70R
80R
90R
100R
110R
]
>>
endobj
3 0 obj
<< /Limits [(Hafnium) (Protactinium)] % Intermediate node
/Kids [120R
130R
140R
150R
16 0R
170R
180R
190R
]
>>
endobj
4 0 obj
<< /Limits [(Radium) (Zirconium)] % Intermediate node
/Kids [200R
210R
220R
230R
240R
]
>>
endobj
5 0 obj
<< /Limits [(Actinium) (Astatine)] % Leaf node

/Names [(Actinium) 250R

90 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

(Aluminum) 26 OR
(Americium) 270R
(Antimony) 280 R
(Argon) 290R
(Arsenic) 300 R
(Astatine) 310R

>>
endobj

24 0 obj
<< /Limits [(Xenon) (Zirconium)] % Leaf node
/Names [(Xenon) 1290R
(Ytterbium) 1300 R
(Yttrium) 1310R
(Zinc) 1320R
(Zirconium) 1330R

]

>>
endobj

25 0 obj
89 % Atomic number (Actinium)
endobj

133 0 obj
40 % Atomic number (Zirconium)
endobj

7.9.7 Number Trees

A number tree is similar to a name tree (see 7.9.6, "Name Trees"), except that its keys shall be integers instead
of strings and shall be sorted in ascending numerical order. The entries in the leaf (or root) nodes containing
the key-value pairs shall be named Nums instead of Names as in a name tree. Table 37 shows the entries in a
number tree’s node dictionaries.

Table 37 — Entries in a number tree node dictionary

Key Type Value

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the
root node if and only if Nums is not present) Shall be an array of indirect
references to the immediate children of this node. The children may be
intermediate or leaf nodes.

Nums array (Root and leaf nodes only; shall be required in leaf nodes; present in the root
node if and only if Kids is not present) Shall be an array of the form

[key, value; key, value, ... key, value]

where each key; is an integer and the corresponding value; shall be the object

associated with that key. The keys shall be sorted in numerical order,
analogously to the arrangement of keys in a name tree as described in 7.9.6,
"Name Trees."

Limits array (Shall be present in Intermediate and leaf nodes only) Shall be an array of two
integers, that shall specify the (numerically) least and greatest keys included in
the Nums array of a leaf node or in the Nums arrays of any leaf nodes that are
descendants of an intermediate node.

o Adobe Systems Incorporated 2008 — All rights reserved 91

PDF 32000-1:2008

7.10 Functions

7.10.1 General

PDF is not a programming language, and a PDF file is not a program. However, PDF provides several types of
function objects (PDF 1.2) that represent parameterized classes of functions, including mathematical formulas
and sampled representations with arbitrary resolution.

NOTE 1 Functions may be used in various ways in PDF, including device-dependent rasterization information for high-
quality printing (halftone spot functions and transfer functions), colour transform functions for certain colour
spaces, and specification of colours as a function of position for smooth shadings.

Functions in PDF represent static, self-contained numerical transformations.
NOTE 2 A function to add two numbers has two input values and one output value:

Similarly, a function that computes the arithmetic and geometric mean of two numbers can be viewed as a
function of two input values and two output values:

+X

X
f(Xg, X;) = —-LZ——J- [Xq % X

In general, a function can take any number (m) of input values and produce any number (n) of output values:
f(Xgs o> Xp_1) = Y>> Yn_1

In PDF functions, all the input values and all the output values shall be numbers, and functions shall have no
side effects.

Each function definition includes a domain, the set of legal values for the input. Some types of functions also
define a range, the set of legal values for the output. Input values passed to the function shall be clipped to the
domain, and output values produced by the function shall be clipped to the range.

EXAMPLE Suppose the following function is defined with a domain of [-1 1]. If the function is called with the input
value 6, that value is replaced with the nearest value in the defined domain, 1, before the function is
evaluated; the resulting output value is therefore 3.

f(x) = x+2

Similarly, if the following function is defined with a range of [0 100], and if the input values -6 and 4 are
passed to the function (and are within its domain), then the output value produced by the function, -14, is
replaced with 0, the nearest value in the defined range.

f(Xp. X)) = 3xXy + Xq

A function object may be a dictionary or a stream, depending on the type of function. The term function
dictionary is used generically in this sub-clause to refer to either a dictionary object or the dictionary portion of a
stream object. A function dictionary specifies the function’s representation, the set of attributes that
parameterize that representation, and the additional data needed by that representation. Four types of
functions are available, as indicated by the dictionary’s FunctionType entry:

e (PDF 1.2) A sampled function (type 0) uses a table of sample values to define the function. Various

techniques are used to interpolate values between the sample values; see 7.10.2, "Type 0 (Sampled)
Functions."

92 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

 (PDF 1.3) An exponential interpolation function (type 2) defines a set of coefficients for an exponential
function; see 7.10.3, "Type 2 (Exponential Interpolation) Functions."

« (PDF 1.3) A stitching function (type 3) is a combination of other functions, partitioned across a domain; see
7.10.4, "Type 3 (Stitching) Functions."

e« (PDF 1.3) A PostScript calculator function (type 4) uses operators from the PostScript language to
describe an arithmetic expression; see 7.10.5, "Type 4 (PostScript Calculator) Functions."

All function dictionaries shall share the entries listed in Table 38.

Table 38 — Entries common to all function dictionaries

Key Type Value

FunctionType | integer (Required) The function type:

0 Sampled function

2 Exponential interpolation function
3 Stitching function

4 PostScript calculator function

Domain array (Required) An array of 2 x m numbers, where m shall be the number
of input values. For each i from 0 to m — 1, Domain,; shall be less than

or equal to Domainyj ¢, and the ith input value, x;, shall lie in the
interval Domain,; < x; < Domain,;,; . Input values outside the declared
domain shall be clipped to the nearest boundary value.

Range array (Required for type 0 and type 4 functions, optional otherwise; see
below) An array of 2 x n numbers, where n shall be the number of
output values. For each j from 0 to n — 1, Rangey; shall be less than or

equal to Rangey;,1, and the jth output value, y;, shall lie in the interval
Rangey; <y; < Rangeyj:;. Output values outside the declared range

shall be clipped to the nearest boundary value. If this entry is absent,
no clipping shall be done.

In addition, each type of function dictionary shall include entries appropriate to the particular function type. The
number of output values can usually be inferred from other attributes of the function; if not (as is always the
case for type 0 and type 4 functions), the Range entry is required. The dimensionality of the function implied by
the Domain and Range entries shall be consistent with that implied by other attributes of the function.

7.10.2 Type 0 (Sampled) Functions

Type 0 functions use a sequence of sample values (contained in a stream) to provide an approximation for
functions whose domains and ranges are bounded. The samples are organized as an m-dimensional table in
which each entry has n components.

NOTE 1 Sampled functions are highly general and offer reasonably accurate representations of arbitrary analytic
functions at low expense. For example, a 1-input sinusoidal function can be represented over the range
[0 180] with an average error of only 1 percent, using just ten samples and linear interpolation. Two-input
functions require significantly more samples but usually not a prohibitive number if the function does not have
high frequency variations.

There shall be no dimensionality limit of a sampled function except for possible implementation limits.

NOTE 2 The number of samples required to represent functions with high dimensionality multiplies rapidly unless the
sampling resolution is very low. Also, the process of multilinear interpolation becomes computationally
intensive if the number of inputs m is greater than 2. The multidimensional spline interpolation is even more
computationally intensive.

In addition to the entries in Table 38, a type 0 function dictionary includes those shown in Table 39.

o Adobe Systems Incorporated 2008 — All rights reserved 93

PDF 32000-1:2008

The Domain, Encode, and Size entries determine how the function’s input variable values are mapped into the
sample table. For example, if Size is [21 31], the default Encode array shall be [0 20 0 30], which maps the
entire domain into the full set of sample table entries. Other values of Encode may be used.

To explain the relationship between Domain, Encode, Size, Decode, and Range, we use the following
notation:

Interpolate (X, x X

<
I

max> Ymin> ymax)

Ymax ~ Ymin
= Ymin * ((X_Xmin) XX

min?

max ~ Xmin

For a given value of x, Interpolate calculates the y value on the line defined by the two points (Xmin, Ymin) and

(Xmax:> Ymax)-

Table 39 — Additional entries specific to a type 0 function dictionary

Key Type Value

Size array (Required) An array of m positive integers that shall specify the
number of samples in each input dimension of the sample table.

BitsPerSample | integer (Required) The number of bits that shall represent each sample. (If the
function has multiple output values, each one shall occupy
BitsPerSample bits.) Valid values shall be 1, 2, 4, 8, 12, 16, 24, and
32.

Order integer (Optional) The order of interpolation between samples. Valid values
shall be 1 and 3, specifying linear and cubic spline interpolation,
respectively. Default value: 1.

Encode array (Optional) An array of 2 x m numbers specifying the linear mapping of
input values into the domain of the function’s sample table. Default
value: [0 (Size0O-1) 0 (Sizel-1) ...].

Decode array (Optional) An array of 2 x n numbers specifying the linear mapping of
sample values into the range appropriate for the function’s output
values. Default value: same as the value of Range.

other stream (various) (Optional) Other attributes of the stream that shall provide the sample
attributes values, as appropriate (see Table 5).

When a sampled function is called, each input value x;, for 0 £ i < m, shall be clipped to the domain:

X;' = min(max (x;, Domain,;), Domain,; , |)

That value shall be encoded:
e = Interpolate (x;', Domain,;, Domain,; . ;, Encode,;, Encode,; , 1)
That value shall be clipped to the size of the sample table in that dimension:
e;' = min(max(e;, 0), Size; - 1)

The encoded input values shall be real numbers, not restricted to integers. Interpolation shall be used to
determine output values from the nearest surrounding values in the sample table. Each output value r;, for

0 £ j < n, shall then be decoded:

94 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

r;’ = Interpolate (r;, 0, 28sPersample _ 1, Decode,;, Decode,; , ;)
Finally, each decoded value shall be clipped to the range:
yj = min(max(rj’, Range2j), Range2j N 1)

Sample data shall be represented as a stream of bytes. The bytes shall constitute a continuous bit stream, with
the high-order bit of each byte first. Each sample value shall be represented as a sequence of BitsPerSample
bits. Successive values shall be adjacent in the bit stream; there shall be no padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the sample values in the first
dimension vary fastest, and the values in the last dimension vary slowest.

EXAMPLE 1 For a function f(a, b, c), where a, b, and c vary from 0 to 9 in steps of 1, the sample values would appear
in this order: f(0, 0, 0), f(1, 0, 0), ..., f(9, 0, 0), f(O, 1, 0), f(1, 1, 0), ..., f(9, 1, 0), f(0, 2, 0), f(1, 2, 0), ...,
(9, 9, 0), (0, 0, 1), f(1, O, 1), and so on.

For a function with multidimensional output (more than one output value), the values shall be stored in the
same order as Range.

The stream data shall be long enough to contain the entire sample array, as indicated by Size, Range, and
BitsPerSample; see 7.3.8.2, "Stream Extent."

Example 2 illustrates a sampled function with 4-bit samples in an array containing 21 columns and 31 rows
(651 values). The function takes two arguments, x and y, in the domain [-1.0 1.0], and returns one value, z, in
that same range. The x argument shall be linearly transformed by the encoding to the domain [0 20] and the y
argument to the domain [0 30]. Using bilinear interpolation between sample points, the function computes a
value for z, which (because BitsPerSample is 4) will be in the range [0 15], and the decoding transforms z to
a number in the range [-1.0 1.0] for the result. The sample array shall be stored in a string of 326 bytes,
calculated as follows (rounded up):

326 bytes = 31 rows ¥ 21 samples/row ¥ 4 bits/sample 2 8 bits/byte

The first byte contains the sample for the point (-1.0, -1.0) in the high-order 4 bits and the sample for the point
(-0.9, -1.0) in the low-order 4 bits.

EXAMPLE 2 14 O obj
<< /FunctionType 0
/Domain [-1.0 1.0 -1.0 1.0]
/Size [21 31]
/Encode [0 20 O 30]
/BitsPerSample 4
/Range [-1.0 1.0]
/Decode [-1.0 1.0]
/Length ...
[Filter ...
>>
stream
...651 sample values...
endstream
endobj

NOTE 3 The Decode entry can be used creatively to increase the accuracy of encoded samples corresponding to
certain values in the range.

EXAMPLE 3 If the range of the function is [-1.0 1.0] and BitsPerSample is 4, the usual value of Decode would be
[-1.0 1.0] and the sample values would be integers in the interval [0 15] (as shown in Figure 8). But if
these values are used, the midpoint of the range, 0.0, is not represented exactly by any sample value,
since it falls halfway between 7 and 8. However, if the Decode array is [-1.0 +1.1429] (1.1429 being

o Adobe Systems Incorporated 2008 — All rights reserved 95

PDF 32000-1:2008

approximately equal to 16 3 14) and the sample values supplied are in the interval [0 14], the effective
range of [-1.0 1.0] is achieved, and the range value 0.0 is represented by the sample value 7.

The Size value for an input dimension can be 1, in which case all input values in that dimension shall be
mapped to the single allowed value. If Size is less than 4, cubic spline interpolation is not possible and Order 3
shall be ignored if specified.

+ 14 + 14
[[
2o 2o
o 7 8 15 o 7 8
Samples Samples
-1 -1 4
/Decode [-1 1] /Decode [-1 1.1429]

Figure 8 — Mapping with the Decode array

7.10.3 Type 2 (Exponential Interpolation) Functions

Type 2 functions (PDF 1.3) include a set of parameters that define an exponential interpolation of one input
value and n output values:

f(X) = yo: -~-ayn_1

In addition to the entries in Table 38, a type 2 function dictionary shall include those listed in Table 40.

Table 40 — Additional entries specific to a type 2 function dictionary

Key Type Value

Co array (Optional) An array of n numbers that shall define the function result when x = 0.0.
Default value: [0.0].

C1 array (Optional) An array of n numbers that shall define the function result when x = 1.0.
Default value: [1.0].

N number (Required) The interpolation exponent. Each input value x shall return n values,
given by yj = C0; + X x (C1; - C0;), for 0 <j < n.

Values of Domain shall constrain x in such a way that if N is not an integer, all values of x shall be non-
negative, and if N is negative, no value of x shall be zero. Typically, Domain is declared as [0.0 1.0], and N is
a positive number. To clip the output to a specified range The Range attribute shall be used.

NOTE When N is 1, the function performs a linear interpolation between CO and C1; therefore, the function can also
be expressed as a sampled function (type 0).

7.10.4 Type 3 (Stitching) Functions
Type 3 functions (PDF 1.3) define a stitching of the subdomains of several 1-input functions to produce a single

new 1-input function. Since the resulting stitching function is a 1-input function, the domain is given by a two-
element array, [Domaing Domain,].

96 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

In addition to the entries in Table 38, a type 3 function dictionary shall include those listed in Table 41.

Table 41 — Additional entries specific to a type 3 function dictionary

Key Type Value

Functions array (Required) An array of k 1-input functions that shall make up the stitching
function. The output dimensionality of all functions shall be the same, and
compatible with the value of Range if Range is present.

Bounds array (Required) An array of k — 1 numbers that, in combination with Domain, shall
define the intervals to which each function from the Functions array shall apply.
Bounds elements shall be in order of increasing value, and each value shall be
within the domain defined by Domain.

Encode array (Required) An array of 2 x k numbers that, taken in pairs, shall map each
subset of the domain defined by Domain and the Bounds array to the domain
of the corresponding function.

Domain shall be of size 2 (that is, m = 1), and Domaing shall be strictly less than Domain, unless k = 1. The

domain shall be partitioned into k subdomains, as indicated by the dictionary’s Bounds entry, which shall be an
array of k - 1 numbers that obey the following relationships (with exceptions as noted below):

Domain, < Boundsj < Bounds; < ... <Bounds, _, < Domain;

The Bounds array shall describe a series of half-open intervals, closed on the left and open on the right
(except the last, which is closed on the right as well). The value of the Functions entry shall be an array of k
functions. The first function shall apply to x values in the first subdomain, Domaing £ x < Boundsg; the second

function shall apply to x values in the second subdomain, Boundsg £ X < Boundsy; and so on. The last

function shall apply to x values in the last subdomain, which includes the upper bound:
Bounds,_, £ x £ Domain;. The value of k may be 1, in which case the Bounds array shall be empty and the

single item in the Functions array shall apply to all x values, Domaing £ x £ Domainy .

The Encode array contains 2 ¥ k numbers. A value x from the ith subdomain shall be encoded as follows:
X' = Interpolate (x, Boundsi _1 Boundsi, EncodeZi, Encode2i + 1)

for O £i < k. In this equation, Bounds_; means Domaing, and Bounds,_; means Domain;. If the last bound,
Bounds,_,, is equal to Domain, then x¢ shall be defined to be Encode,;.

NOTE The stitching function is designed to make it easy to combine several functions to be used within one shading
pattern over different parts of the shading’s domain. Shading patterns are discussed in 8.7.4, "Shading
Patterns". The same effect could be achieved by creating a separate shading dictionary for each of the
functions, with adjacent domains. However, since each shading would have similar parameters, and because
the overall effect is one shading, it is more convenient to have a single shading with multiple function
definitions. Also, type 3 functions provide a general mechanism for inverting the domains of 1-input functions.

EXAMPLE Consider a function f with a Domain of [0.0 1.0] and a stitching function g with a Domain of [0.0 1.0], a
Functions array containing f, and an Encode array of [1.0 0.0]. In effect, g(x) = f(1 - x).

7.10.5 Type 4 (PostScript Calculator) Functions

7.10.5.1 General

A type 4 function (PDF 1.3), also called a PostScript calculator function, shall be represented as a stream
containing code written in a small subset of the PostScript language.

o Adobe Systems Incorporated 2008 — All rights reserved 97

PDF 32000-1:2008

NOTE Although any function can be sampled (in a type 0 PDF function) and others can be described with exponential
functions (type 2 in PDF), type 4 functions offer greater flexibility and potentially greater accuracy. For
example, a tint transformation function for a hexachrome (six-component) DeviceN colour space with an
alternate colour space of DeviceCMYK (see 8.6.6.5, "DeviceN Colour Spaces") requires a 6-in, 4-out function.
If such a function were sampled with m values for each input variable, the number of samples, 4 ¥ m®, could be
prohibitively large. In practice, such functions can often be written as short, simple PostScript functions.

Type 4 functions also make it possible to include a wide variety of halftone spot functions without the loss of
accuracy that comes from sampling, and without adding to the list of predefined spot functions (see 10.5.3,
"Spot Functions"). All of the predefined spot functions can be written as type 4 functions.

The language that shall be used in a type 4 function contains expressions involving integers, real numbers, and
boolean values only. There shall be no composite data structures such as strings or arrays, no procedures, and
no variables or names. Table 42 lists the operators that can be used in this type of function. (For more
information on these operators, see Appendix B of the PostScript Language Reference, Third Edition.)
Although the semantics are those of the corresponding PostScript operators, a full PostScript interpreter is not
required.

Table 42 — Operators in type 4 functions

Operator Type Operators

Arithmetic operators | abs CcVi floor mod sin
add cvr idiv mul sqrt
atan div In neg sub
ceiling exp log round truncate
cos

Relational, boolean, and false le not true

and bitwise bitshift — ge It or xor

operators
eq gt ne

Conditional if ifelse

operators

Stack operators copy exch pop
dup index roll

The operand syntax for type 4 functions shall follow PDF conventions rather than PostScript conventions. The
entire code stream defining the function shall be enclosed in braces {} (using LEFT CURLY BRACE (7Bh) and
RIGHT CURLY BRACE (07hD)). Braces also shall delimit expressions that are executed conditionally by the if
and ifelse operators:

e boolean {expression} if

* boolean {expression;} {expression,} ifelse

This construct is purely syntactic; unlike in PostScript, no “procedure objects” shall be involved.

A type 4 function dictionary shall include the entries in Table 38, as well as other appropriate stream attributes
(see Table 5). The following example shows a type 4 function equivalent to the predefined spot function
DoubleDot (see 10.5.3, "Spot Functions").

EXAMPLE 10 O obj
<< /FunctionType 4
/Domain [-1.0 1.0 -1.0 1.0]
/Range [-1.0 1.0]
/Length 71
>>

stream

98 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

{ 360 mul sin
2 div
exch 360 mul sin
2 div
add
}

endstream
endobj

The Domain and Range entries shall both be required. The input variables shall constitute the initial operand
stack; the items remaining on the operand stack after execution of the function shall be the output variables. It
shall be an error for the number of remaining operands to differ from the number of output variables specified
by Range or for any of them to be objects other than numbers.

Implementations of type 4 functions shall provide a stack with room for at least 100 entries. No implementation
shall be required to provide a larger stack, and it shall be an error to overflow the stack.

Although any integers or real numbers that may appear in the stream fall under the same implementation limits
(defined in Annex C) as in other contexts, the intermediate results in type 4 function computations shall not. An

implementation may use a representation that exceeds those limits. Operations on real numbers, for example,
might use single-precision or double-precision floating-point numbers.

7.10.5.2 Errors in Type 4 Functions

The part of a conforming reader that reads a type 4 function (analogous to the PostScript scanner) shall detect
and report syntax errors. Any errors detected by the conforming reader shall be errors in the PDF file and shall
be handled like other errors in the file.

The part of a conforming reader that executes a type 4 function (analogous to the PostScript interpreter) shall
detect and report errors. This specification does not define a representation for the errors; those details shall be
provided by the conforming reader that processes the PDF file. The following types of errors can occur (among
others):

» Stack overflow

» Stack underflow

» Atype error (for example, applying not to a real number)

» Avrange error (for example, applying sqrt to a negative number)

e An undefined result (for example, dividing by 0)
7.11 File Specifications

7.11.1 General

A PDF file can refer to the contents of another file by using a file specification (PDF 1.1), which shall take either
of two forms:

« Asimple file specification shall give just the name of the target file in a standard format, independent of the
naming conventions of any particular file system. It shall take the form of either a string or a dictionary

« Afullfile specification shall include information related to one or more specific file systems. It shall only be
represented as a dictionary.

o Adobe Systems Incorporated 2008 — All rights reserved 99

PDF 32000-1:2008

A file specification shall refer to a file external to the PDF file or to a file embedded within the referring PDF file,
allowing its contents to be stored or transmitted along with the PDF file. The file shall be considered to be
external to the PDF file in either case.

7.11.2 File Specification Strings

7.11.2.1 General

The standard format for representing a simple file specification in string form divides the string into component
substrings separated by the SOLIDUS character (2Fh) (/). The SOLIDUS is a generic component separator
that shall be mapped to the appropriate platform-specific separator when generating a platform-dependent file
name. Any of the components may be empty. If a component contains one or more literal SOLIDI, each shall be
preceded by a REVERSE SOLIDUS (5Ch) (\), which in turn shall be preceded by another REVERSE SOLIDUS
to indicate that it is part of the string and not an escape character.

EXAMPLE (in\\/out)
represents the file name
in/out

The REVERSE SOLIDI shall be removed in processing the string; they are needed only to distinguish the
component values from the component separators. The component substrings shall be stored as bytes and
shall be passed to the operating system without interpretation or conversion of any sort.

7.11.2.2 Absolute and Relative File Specifications

A simple file specification that begins with a SOLIDUS shall be an absolute file specification. The last
component shall be the file name; the preceding components shall specify its context. In some file
specifications, the file name may be empty; for example, URL (uniform resource locator) specifications can
specify directories instead of files. A file specification that does not begin with a SOLIDUS shall be a relative file
specification giving the location of the file relative to that of the PDF file containing it.

In the case of a URL-based file system, the rules of Internet RFC 1808, Relative Uniform Resource Locators
(see the Bibliography), shall be used to compute an absolute URL from a relative file specification and the
specification of the PDF file. Prior to this process, the relative file specification shall be converted to a relative
URL by using the escape mechanism of RFC 1738, Uniform Resource Locators, to represent any bytes that
would be either unsafe according to RFC 1738 or not representable in 7-bit U.S. ASCII. In addition, such URL-
based relative file specifications shall be limited to paths as defined in RFC 1808. The scheme, network
location/login, fragment identifier, query information, and parameter sections shall not be allowed.

In the case of other file systems, a relative file specification shall be converted to an absolute file specification
by removing the file name component from the specification of the containing PDF file and appending the
relative file specification in its place.

EXAMPLE 1 The relative file specification
ArtFiles/Figurel.pdf
appearing in a PDF file whose specification is
/HardDisk/PDFDocuments/AnnualReport/ Summary. pdf
yields the absolute specification

/HardDisk/PDFDocuments/AnnualReport/ArtFiles/Figurel. pdf

The special component .. (two PERIODSs) (2Eh) can be used in a relative file specification to move up a level in
the file system hierarchy. After an absolute specification has been derived, when the component immediately
preceding .. is not another .., the two cancel each other; both are eliminated from the file specification and the
process is repeated.

100 o Adobe Systems Incorporated 2008 — All rights reserved

EXAMPLE 2

PDF 32000-1:2008

The relative file specification from EXAMPLE 1 in this sub-clause using the .. (two PERIODS) special
component

..I../ArtFiles/Figurel.pdf
would yield the absolute specification

/HardDisk/ArtFiles/Figurel.pdf

7.11.2.3 Conversion to Platform-Dependent File Names

The conversion of a file specification to a platform-dependent file name depends on the specific file naming
conventions of each platform:

e For DOS, the initial component shall be either a physical or logical drive identifier or a network resource
name as returned by the Microsoft Windows function WNetGetConnection, and shall be followed by a
COLON (3Ah) (:). A network resource name shall be constructed from the first two components; the first
component shall be the server name and the second shall be the share name (volume name). All
components shall be separated by REVERSE SOLIDI (backslashes) (5Ch). It shall be possible to specify
an absolute DOS path without a drive by making the first component empty. (Empty components are
ignored by other platforms.)

e For Mac OS, all components shall be separated by COLONSs.

e For UNIX, all components shall be separated by SOLIDI (2Fh) (slashes). An initial SOLIDUS, if present,
shall be preserved.

Strings used to specify a file name shall be interpreted in the standard encoding for the platform on which the
document is being viewed. Table 43 shows examples of file specifications on the most common platforms.

NOTE 1

NOTE 2

Table 43 — Examples of file specifications

System System-dependent paths Written form
DOS \pdfdocs\spec.pdf (no drive) (//pdfdocs/spec. pdf)
r:\pdfdocs\spec. pdf (/r/pdfdocs/spec. pdf)
pclib/eng:\pdfdocs\spec. pdf (/pclib/eng/pdfdocs/
spec.pdf)
Mac OS Mac HD:PDFDocs:spec.pdf (/Mac HD/PDFDocs/
spec.pdf)
UNIX /user/fred/pdfdocs/spec. pdf (/user/fred/pdfdocs/
pdfdocs/spec.pdf (relative) spec.pdf)
(pdfdocs/spec. pdf)

When creating documents that are to be viewed on multiple platforms, care should be taken to ensure file
name compatibility. Only a subset of the U.S. ASCII character set should be used in file specifications: the
uppercase alphabetic characters (A-Z), the numeric characters (0-9), the PERIOD (2Eh) and the LOW LINE
(underscore) (5Fh). The PERIOD has special meaning in DOS and Windows file names, and as the first
character in a Mac OS pathname. In file specifications, the PERIOD should be used only to separate a base
file name from a file extension.

Some file systems are case-insensitive, and names within a directory are unique so names should remain
distinguishable if lowercase letters are changed to uppercase or vice versa. On DOS and Windows 3.1
systems and on some CD-ROM file systems, file names are limited to 8 characters plus a 3-character
extension. File system software typically converts long names to short names by retaining the first 6 or 7
characters of the file name and the first 3 characters after the last PERIOD, if any. Since characters beyond the
sixth or seventh are often converted to other values unrelated to the original value, file names should be
distinguishable from the first 6 characters.

o Adobe Systems Incorporated 2008 — All rights reserved 101

PDF 32000-1:2008

7.11.2.4 Multiple-Byte Strings in File Specifications

In PDF 1.2 or higher, a file specification may contain multiple-byte character codes, represented in
hexadecimal form between angle brackets (< and >) (using LESS-THAN SIGN (3Ch) and GREATER-THAN
SIGN (3Eh)). Since the SOLIDUS (2Fh) (slash character), denoted as <2F>, is used as a component delimiter
and the REVERSE SOLIDUS (5Ch) (backslash character), denoted as <5C>, is used as an escape character,
any occurrence of either of these bytes in a multiple-byte character shall be preceded by the ASCII code for the
SOLIDUS (2Fh).

EXAMPLE A file name containing the 2-byte character code <89 5C> is written as <89 5C 5C>. When the
application encounters this sequence of bytes in a file name, it replaces the sequence with the original
2-byte code.

7.11.3 File Specification Dictionaries

The dictionary form of file specification provides more flexibility than the string form, allowing different files to be
specified for different file systems or platforms, or for file systems other than the standard ones (DOS/Windows,
Mac OS, and UNIX). Table 44 shows the entries in a file specification dictionary. Regardless of the platform,
conforming readers should use the F and UF (beginning with PDF 1.7) entries to specify files. The UF entry is
optional, but should be included because it enables cross-platform and cross-language compatibility.

Table 44 — Entries in a file specification dictionary

Key Type Value

Type name (Required if an EF or RF entry is present; recommended always) The type of
PDF object that this dictionary describes; shall be Filespec for a file
specification dictionary.

FS name (Optional) The name of the file system that shall be used to interpret this file
specification. If this entry is present, all other entries in the dictionary shall be
interpreted by the designated file system. PDF shall define only one standard
file system name, URL (see 7.11.5, "URL Specifications"); an application can
register other names (see Annex E). This entry shall be independent of the F,
UF, DOS, Mac, and Unix entries.

F string (Required if the DOS, Mac, and Unix entries are all absent; amended with the
UF entry for PDF 1.7) A file specification string of the form described in 7.11.2,
"File Specification Strings,"” or (if the file system is URL) a uniform resource
locator, as described in 7.11.5, "URL Specifications."

The UF entry should be used in addition to the F entry. The UF entry provides
cross-platform and cross-language compatibility and the F entry provides
backwards compatibility.

UF text string (Optional, but recommended if the F entry exists in the dictionary; PDF 1.7) A
Unicode text string that provides file specification of the form described in
7.11.2, "File Specification Strings." This is a text string encoded using
PDFDocEncoding or UTF-16BE with a leading byte-order marker (as defined
in 7.9.2.2, "Text String Type"). The F entry should be included along with this
entry for backwards compatibility reasons.

DOS byte string (Optional) A file specification string (see 7.11.2, "File Specification Strings")
representing a DOS file name.

This entry is obsolescent and should not be used by conforming writers.

Mac byte string (Optional) A file specification string (see 7.11.2, "File Specification Strings")
representing a Mac OS file name.

This entry is obsolescent and should not be used by conforming writers.

Unix byte string (Optional) A file specification string (see 7.11.2, "File Specification Strings")
representing a UNIX file name.

This entry is obsolescent and should not be used by conforming writers.

102 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 44 — Entries in afile specification dictionary (continued)

Key Type Value
ID array (Optional) An array of two byte strings constituting a file identifier (see 14.4,

"File Identifiers") that should be included in the referenced file.

NOTE The use of this entry improves an application’s chances of finding
the intended file and allows it to warn the user if the file has
changed since the link was made.

\% boolean (Optional; PDF 1.2) A flag indicating whether the file referenced by the file

specification is volatile (changes frequently with time). If the value is true,
applications shall not cache a copy of the file. For example, a movie
annotation referencing a URL to a live video camera could set this flag to true
to notify the conforming reader that it should re-acquire the movie each time it
is played. Default value: false.

EF dictionary (Required if RF is present; PDF 1.3; amended to include the UF key in PDF
1.7) A dictionary containing a subset of the keys F, UF, DOS, Mac, and Unix,
corresponding to the entries by those names in the file specification dictionary.
The value of each such key shall be an embedded file stream (see 7.11.4,
"Embedded File Streams") containing the corresponding file. If this entry is
present, the Type entry is required and the file specification dictionary shall be
indirectly referenced.

The F and UF entries should be used in place of the DOS, Mac, or Unix
entries.

RF dictionary (Optional; PDF 1.3) A dictionary with the same structure as the EF dictionary,
which shall be present. Each key in the RF dictionary shall also be present in
the EF dictionary. Each value shall be a related files array (see 7.11.4.2,
"Related Files Arrays") identifying files that are related to the corresponding
file in the EF dictionary. If this entry is present, the Type entry is required and
the file specification dictionary shall be indirectly referenced.

Desc text string (Optional; PDF 1.6) Descriptive text associated with the file specification. It
shall be used for files in the EmbeddedFiles name tree (see 7.7.4, "Name
Dictionary").

Cl dictionary (Optional; shall be indirect reference; PDF 1.7) A collection item dictionary,

which shall be used to create the user interface for portable collections (see
7.11.6, "Collection Items").

7.11.4 Embedded File Streams

7.11.4.1 General

If a PDF file contains file specifications that refer to an external file and the PDF file is archived or transmitted,
some provision should be made to ensure that the external references will remain valid. One way to do this is to
arrange for copies of the external files to accompany the PDF file. Embedded file streams (PDF 1.3) address
this problem by allowing the contents of referenced files to be embedded directly within the body of the PDF
file. This makes the PDF file a self-contained unit that can be stored or transmitted as a single entity. (The
embedded files are included purely for convenience and need not be directly processed by any conforming
reader.)

NOTE If the file contains OPI (Open Prepress Interface) dictionaries that refer to externally stored high-resolution
images (see 14.11.7, "Open Prepress Interface (OPI)"), the image data can be incorporated into the PDF file
with embedded file streams.

An embedded file stream shall be included in a PDF document in one of the following ways:

« Any file specification dictionary in the document may have an EF entry that specifies an embedded file
stream. The stream data shall still be associated with a location in the file system. In particular, this method

o Adobe Systems Incorporated 2008 — All rights reserved 103

PDF 32000-1:2008

shall be used for file attachment annotations (see 12.5.6.15, "File Attachment Annotations"), which
associate the embedded file with a location on a page in the document.

 Embedded file streams may be associated with the document as a whole through the EmbeddedFiles
entry (PDF 1.4) in the PDF document’s name dictionary (see 7.7.4, "Name Dictionary"). The associated
name tree shall map name strings to file specifications that refer to embedded file streams through their EF
entries.

Beginning with PDF 1.6, the Desc entry of the file specification dictionary (see Table 44) should be used to
provide a textual description of the embedded file, which can be displayed in the user interface of a conforming
reader. Previously, it was necessary to identify document-level embedded files by the name string provided in
the name dictionary associated with an embedded file stream in much the same way that the JavaScript name
tree associates name strings with document-level JavaScript actions (see 12.6.4.16, "JavaScript Actions").

The stream dictionary describing an embedded file shall contain the standard entries for any stream, such as
Length and Filter (see Table 5), as well as the additional entries shown in Table 45.

Table 45 — Additional entries in an embedded file stream dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be EmbeddedFile for an embedded file stream.

Subtype name (Optional) The subtype of the embedded file. The value of this entry
shall be a first-class name, as defined in Annex E. Names without a
registered prefix shall conform to the MIME media type names defined
in Internet RFC 2046, Multipurpose Internet Mail Extensions (MIME),
Part Two: Media Types (see the Bibliography), with the provision that
characters not allowed in names shall use the 2-character
hexadecimal code format described in 7.3.5, "Name Objects."

Params dictionary (Optional) An embedded file parameter dictionary that shall contain
additional file-specific information (see Table 46).

Table 46 — Entries in an embedded file parameter dictionary

Key Type Value

Size integer (Optional) The size of the uncompressed embedded file, in bytes.

CreationDate date (Optional) The date and time when the embedded file was created.

ModDate date (Optional) The date and time when the embedded file was last
modified.

Mac dictionary (Optional) A subdictionary containing additional information specific to

Mac OS files (see Table 47).

CheckSum string (Optional) A 16-byte string that is the checksum of the bytes of the
uncompressed embedded file. The checksum shall be calculated by
applying the standard MD5 message-digest algorithm (described in
Internet RFC 1321, The MD5 Message-Digest Algorithm; see the
Bibliography) to the bytes of the embedded file stream.

104 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

For Mac OS files, the Mac entry in the embedded file parameter dictionary should hold a further subdictionary
containing Mac OS—specific file information. Table 47 shows the contents of this subdictionary.

Table 47 — Entries in a Mac OS file information dictionary

Key Type Value

Subtype integer | (Optional) The embedded file's file type. It shall be encoded as an integer
according to Mac OS conventions: a 4-character ASCII text literal, that shall be
a 32-bit integer, with the high-order byte first.

EXAMPLE The file type “CARO” is represented as the hexadecimal
integer 4341524F, which is expressed in decimal as
1128354383.
Creator integer | (Optional) The embedded file’s creator signature shall be encoded in the same

way as Subtype.

ResFork stream | (Optional) The binary contents of the embedded file’s resource fork.

7.11.4.2 Related Files Arrays

In some circumstances, a PDF file can refer to a group of related files, such as the set of five files that make up
a DCS 1.0 colour-separated image. The file specification explicitly names only one of the files; the rest shall be
identified by some systematic variation of that file name (such as by altering the extension). When such a file is
to be embedded in a PDF file, the related files shall be embedded as well. This is accomplished by including a
related files array (PDF 1.3) as the value of the RF entry in the file specification dictionary. The array shall have
2 ¥ n elements, which shall be paired in the form

[string; streamq
string, stream,

string,, stream,

]

The first element of each pair shall be a string giving the name of one of the related files; the second element
shall be an embedded file stream holding the file's contents.

EXAMPLE In the following example, objects 21, 31, and 41 are embedded file streams containing the DOS file
SUNSET.EPS, the Mac OS file Sunset.eps, and the UNIX file Sunset.eps, respectively. The file
specification dictionary’s RF entry specifies an array, object 30, identifying a set of embedded files related
to the Mac OS file, forming a DCS 1.0 set. The example shows only the first two embedded file streams in
the set; an actual PDF file would, of course, include all of them.

10 O obj % File specification dictionary
<< [Type /Filespec
/DOS (SUNSET.EPS)
/Mac (Sunset.eps) % Name of Mac OS file
/Unix (Sunset.eps)

/EF << /DOS 210R

/Mac 310R % Embedded Mac OS file
/Unix 410R
>>
IRF << /Mac 300R >> % Related files array for Mac OS file
>>
endobj
30 0 obj % Related files array for Mac OS file
[(Sunset.eps) 310R % Includes file Sunset.eps itself

(Sunset.C) 320R
(Sunset.M) 330R
(Sunset.Y) 340R

o Adobe Systems Incorporated 2008 — All rights reserved 105

PDF 32000-1:2008

(Sunset.K) 350R

]
endobj

31 0 obj % Embedded file stream for Mac OS file
<< [Type /EmbeddedFile % Sunset.eps
/Length ...
[Filter ...
>>
stream
... Data for Sunset.eps...
endstream
endobj

32 0 obj % Embedded file stream for related file
<< [Type /EmbeddedFile % Sunset.C
/Length ...
[Filter ...
>>
stream
...Data for Sunset.C...
endstream
endobj

7.11.5 URL Specifications

When the FS entry in a file specification dictionary has the value URL, the value of the F entry in that dictionary
is not a file specification string, but a uniform resource locator (URL) of the form defined in Internet RFC 1738,
Uniform Resource Locators (see the Bibliography).

EXAMPLE The following example shows a URL specification.
<< /FS /URL

/F (ftp://www.beatles.com/Movies/AbbeyRoad.mov)
>>

The URL shall adhere to the character-encoding requirements specified in RFC 1738. Because 7-bit U.S.
ASCII is a strict subset of PDFDocEncoding, this value shall also be considered to be in that encoding.

7.11.6 Collection Items

Beginning with PDF 1.7, a collection item dictionary shall contain the data described by the collection schema
dictionary for a particular file in a collection (see 12.3.5, "Collections"). Table 48 describes the entries in a
collection item dictionary.

Table 48 — Entries in a collection item dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be Collectionltem for a collection item dictionary.

106 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 48 — Entries in a collection item dictionary (continued)

Key Type Value
Other text string, | (Optional) Provides the data corresponding to the related fields in the
keys date, collection dictionary. If the entry is a dictionary, then it shall be a collection

number or | subitem dictionary (see Table 49).

dictionary | The type of each entry shall match the type of data identified by the collection
field dictionary (see Table 157) referenced by the same key in the collection
schema dictionary (see Table 156).

EXAMPLE If the corresponding collection field has a Subtype entry of
S, then the entry is a text string.

A single collection item dictionary may contain multiple entries, with one entry
representing each key (see EXAMPLE 1 in 12.3.5, "Collections").

A collection subitem dictionary provides the data corresponding to the related fields in the collection dictionary,
and it provides a means of associating a prefix string with that data value. The prefix shall be ignored by the
sorting algorithm. Table 49 describes the entries in a collection subitem dictionary.

Table 49 — Entries in a collection subitem dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,

shall be CollectionSubitem for a collection item dictionary.

D textstring, | (Optional) The data corresponding to the related entry in the collection field
date, or dictionary (see Table 157). The type of data shall match the data type
number identified by the corresponding collection field dictionary. Default: none.

P text string | (Optional) A prefix string that shall be concatenated with the text string

presented to the user. This entry is ignored when a conforming reader sorts
the items in the collection. Default: none.

7.11.7 Maintenance of File Specifications

The techniques described in this sub-clause can be used to maintain the integrity of the file specifications within
a PDF file during the following types of operations:

» Updating the relevant file specification when a referenced file is renamed
« Determining the complete collection of files that are copied to a mirror site

* When creating new links to external files, discovering existing file specifications that refer to the same files
and sharing them

« Finding the file specifications associated with embedded files to be packed or unpacked

NOTE 1 It is not possible, in general, to find all file specification strings in a PDF file because there is no way to
determine whether a given string is a file specification string. It is possible, however, to find all file specification
dictionaries, provided that they meet the following conditions:

They are indirect objects.

They contain a Type entry whose value is the name Filespec.

NOTE 2 A conforming reader can locate all of the file specification dictionaries by traversing the PDF file’s cross-
reference table (see 7.5.4, "Cross-Reference Table") and finding all dictionaries with Type keys whose value is
Filespec. For this reason, all file specifications should be expressed in dictionary form and meet the conditions
stated above. Any file specification dictionary specifying embedded files (that is, one that contains an EF entry)
should satisfy these conditions (see Table 44).

o Adobe Systems Incorporated 2008 — All rights reserved 107

PDF 32000-1:2008

NOTE 3

NOTE 4

EXAMPLE

NOTE 5

NOTE 6

NOTE 7

It may not be possible to locate file specification dictionaries that are direct objects, since they are neither self-
typed nor necessarily reachable by any standard path of object references.

Files may be embedded in a PDF file either directly, using the EF entry in a file specification dictionary, or
indirectly, using related files arrays specified in the RF entry. If a file is embedded indirectly, its name is given
by the string that precedes the embedded file stream in the related files array. If it is embedded directly, its
name is obtained from the value of the corresponding entry in the file specification dictionary.

The EXAMPLE in 7.11.4.2, "Related Files Arrays," for instance, shows the EF dictionary having a DOS
entry identifying object number 21 as an embedded file stream. The name of the embedded DOS file,
SUNSET.EPS, is given by the DOS entry in the file specification dictionary.

A given external file may be referenced from more than one file specification. Therefore, when embedding a
file with a given name, it is recommended to check for other occurrences of the same name as the value
associated with the corresponding key in other file specification dictionaries. This requires finding all
embeddable file specifications and, for each matching key, checking for both of the following conditions:

The string value associated with the key matches the name of the file being embedded.

A file has not already been embedded for the file specification.

If there is already a corresponding key in the EF dictionary, a file has already been embedded for that use of
the file name.

Files associated with a given file name need not be unique. The same file name, such as readme.txt, may be
associated with different embedded files in distinct file specifications.

7.12 Extensions Dictionary

7.12.1

General

The extensions dictionary, an entry in the document’s catalog dictionary, if present, shall contain one or more
entries identifying developer-defined extensions to the 1ISO 32000-1 Standard. An extensions dictionary, not
shown, may optionally contain a Type entry whose value is the name Extensions. The keys in the extensions
dictionary shall be names consisting only of the registered prefixes, described in Annex E, of the developers
whose extensions are being used. The values shall be developer extensions dictionaries specifying developer-
defined version information as shown in Table 50. The extensions dictionary, all developer extensions
dictionary entries in the extensions dictionary, as well as their entries, all shall be direct objects (i.e., this
information shall be nested directly within the catalog dictionary with no indirect objects used).

7.12.2

Developer Extensions Dictionary

Table 50 describes the entries in a developer extensions dictionary.

Table 50 — Entries in a developer extensions dictionary

Key

Type Value

Type

name (Optional) The type of PDF object that this dictionary describes; if present,
shall be DeveloperExtensions.

BaseVersion name (Required) The name of the PDF version to which this extension applies. The

name shall be consistent with the syntax used for the Version entry of the
catalog dictionary (see 7.7.2, “Document Catalog”).

ExtensionLevel | integer (Required) An integer defined by the developer to denote the extension being

used. If the developer introduces more than one extension to a given
BaseVersion the extension level numbers assigned by that developer shall
increase over time.

108

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

7.12.3 BaseVersion

The value of the BaseVersion entry shall be a name and shall be consistent with the syntax used for the
Version entry value of the catalog dictionary (see 7.7.2, “Document Catalog”). The value of BaseVersion,
when treated as a version number, shall be less than or equal to the PDF version, both in the document header
(see 7.5.2, “File Header”) and the catalog Version key value, if present. The value of BaseVersion may be
different from the version number in the document header or that supplied by the Version key in the Catalog.
This is because it reflects the version of the standard that has been extended and not the version of this
particular file.

NOTE 1 The value of BaseVersion is not to be interpreted as a real number but as two integers with a PERIOD (2Eh)
between them.

7.12.4 ExtensionLevel

The value of the ExtensionLevel entry shall be an integer, which shall be interpreted with respect to the
BaseVersion value. If a developer has released multiple extensions against the same BaseVersion value,
they shall be ordered over time and the ExtensionsLevel numbers shall be a monotonically increasing
sequence over time.

EXAMPLE 1 %PDF-1.7
<</Type /Catalog
/Extensions
<</ADBE
<</BaseVersion /1.7
/ExtensionLevel 3
>>
>>
>>

EXAMPLE 2 %PDF-1.7
<</Type /Catalog
/Extensions
<</GLGR
<</BaseVersion /1.7
/ExtensionLevel 1002
>>
>>
>>

EXAMPLE 3 %PDF-1.7
<</Type /Catalog
/Extensions
<</ADBE
<</BaseVersion /1.7
/ExtensionLevel 3
>>
IGLGR
<</BaseVersion /1.7
/ExtensionLevel 1002
>>
>>
>>

o Adobe Systems Incorporated 2008 — All rights reserved 109

PDF 32000-1:2008

8 Graphics

8.1 General

The graphics operators used in PDF content streams describe the appearance of pages that are to be
reproduced on a raster output device. The facilities described in this clause are intended for both printer and
display applications.

The graphics operators form six main groups:

« Graphics state operators manipulate the data structure called the graphics state, the global framework
within which the other graphics operators execute. The graphics state includes the current transformation
matrix (CTM), which maps user space coordinates used within a PDF content stream into output device
coordinates. It also includes the current colour, the current clipping path, and many other parameters that
are implicit operands of the painting operators.

» Path construction operators specify paths, which define shapes, line trajectories, and regions of various
sorts. They include operators for beginning a new path, adding line segments and curves to it, and closing
it.

« Path-painting operators fill a path with a colour, paint a stroke along it, or use it as a clipping boundary.

» Other painting operators paint certain self-describing graphics objects. These include sampled images,
geometrically defined shadings, and entire content streams that in turn contain sequences of graphics
operators.

« Text operators select and show character glyphs from fonts (descriptions of typefaces for representing text
characters). Because PDF treats glyphs as general graphical shapes, many of the text operators could be
grouped with the graphics state or painting operators. However, the data structures and mechanisms for
dealing with glyph and font descriptions are sufficiently specialized that clause 9, "Text" focuses on them.

e Marked-content operators associate higher-level logical information with objects in the content stream.
This information does not affect the rendered appearance of the content (although it may determine if the
content should be presented at all; see 8.11, "Optional Content"); it is useful to applications that use PDF
for document interchange. Marked content is described in 14.6, "Marked Content".

This clause presents general information about device-independent graphics in PDF: how a PDF content
stream describes the abstract appearance of a page. Rendering—the device-dependent part of graphics—is
covered in clause 10, "Rendering". The Bibliography lists a number of books that give details of these computer
graphics concepts and their implementation.

8.2 Graphics Objects

As discussed in 7.8.2, "Content Streams", the data in a content stream shall be interpreted as a sequence of
operators and their operands, expressed as basic data objects according to standard PDF syntax. A content
stream can describe the appearance of a page, or it can be treated as a graphical element in certain other
contexts.

The operands and operators shall be written sequentially using postfix notation. Although this notation
resembles the sequential execution model of the PostScript language, a PDF content stream is not a program
to be interpreted; rather, it is a static description of a sequence of graphics objects. There are specific rules,
described below, for writing the operands and operators that describe a graphics object.

PDF provides five types of graphics objects:

e A path object is an arbitrary shape made up of straight lines, rectangles, and cubic Bézier curves. A path
may intersect itself and may have disconnected sections and holes. A path object ends with one or more

110 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

painting operators that specify whether the path shall be stroked, filled, used as a clipping boundary, or
some combination of these operations.

» Atext object consists of one or more character strings that identify sequences of glyphs to be painted. Like
a path, text can be stroked, filled, or used as a clipping boundary.

* An external object (XObject) is an object defined outside the content stream and referenced as a named
resource (see 7.8.3, "Resource Dictionaries"). The interpretation of an XObject depends on its type. An
image XObject defines a rectangular array of colour samples to be painted; a form XObject is an entire
content stream to be treated as a single graphics object. Specialized types of form XObjects shall be used
to import content from one PDF file into another (reference XObjects) and to group graphical elements
together as a unit for various purposes (group XObjects). In particular, the latter are used to define
transparency groups for use in the transparent imaging model (transparency group XObijects, discussed in
detail in clause 11, "Transparency"). There is also a PostScript XObject that may appear in some existing
PDF files, but it should not be used by a PDF 1.7 conforming writer.

 An inline image object uses a special syntax to express the data for a small image directly within the
content stream.

» A shading object describes a geometric shape whose colour is an arbitrary function of position within the
shape. (A shading can also be treated as a colour when painting other graphics objects; it is not
considered to be a separate graphics object in that case.)

PDF 1.3 and earlier versions use an opaque imaging model in which each graphics object is painted in
sequence, completely obscuring any previous marks it may overlay on the page. PDF 1.4 introduced a
transparent imaging model in which objects can be less than fully opaque, allowing previously painted marks to
show through. Each object is painted on the page with a specified opacity, which may be constant at every
point within the object’'s shape or may vary from point to point. The previously existing contents of the page
form a backdrop with which the new object is composited, producing results that combine the colours of the
object and backdrop according to their respective opacity characteristics. The objects at any given point on the
page forms a transparency stack, where the stacking order is defined to be the order in which the objects shall
be specified, bottommost object first. All objects in the stack can potentially contribute to the result, depending
on their colours, shapes, and opacities.

PDF's graphics parameters are so arranged that objects shall be painted by default with full opacity, reducing
the behaviour of the transparent imaging model to that of the opague model. Accordingly, the material in this
clause applies to both the opaque and transparent models except where explicitly stated otherwise; the
transparent model is described in its full generality in clause 11, "Transparency".

Although the painting behaviour described above is often attributed to individual operators making up an object,
it is always the object as a whole that is painted. Figure 9 in Annex L shows the ordering rules for the
operations that define graphics objects. Some operations shall be permitted only in certain types of graphics
objects or in the intervals between graphics objects (called the page description level in the figure). Every
content stream begins at the page description level, where changes may be made to the graphics state, such
as colours and text attributes, as discussed in the following sub-clauses.

In the Figure 9 in Annex L, arrows indicate the operators that mark the beginning or end of each type of
graphics object. Some operators are identified individually, others by general category. Table 51 summarizes
these categories for all PDF operators.

Table 51 — Operator Categories

Category Operators Table
General graphics state | w, J,j, M, d, ri, i, gs 57
Special graphics state | g, Q,cm 57
Path construction m,l,c,v,y, h, re 59

o Adobe Systems Incorporated 2008 — All rights reserved 111

PDF 32000-1:2008

112

Table 51 — Operator Categories (continued)

Category Operators Table
Path painting S, s, f, F f*,B,B* b, b* n 60
Clipping paths W, W* 61
Text objects BT, ET 107
Text state Tc, Tw, Tz, TL, Tf, Tr, Ts
Text positioning Td, TD, Tm, T* 108
Text showing Tj, 73,4, " 109
Type 3 fonts do, d1 113
Color CS, cs, SC, SCN, sc, scn, G, g, RG, | 74
rg, K, k
Shading patterns sh 77
Inline images BI, ID, El 92
XObjects Do 87
Marked content MP, DP, BMC, BDC, EMC 320
Compatibility BX, EX 32

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Path object

Allowed operators:
« Path construction

A

W, w#

A4

Path-painting
operators

Clipping path object

Allowed operators:
» None

Y

Text object

Allowed operators:

« General graphics state
+ Color

» Text state

« Text-showing

« Text-positioning

+ Marked-content

BT

Path-painting

operators

!

El

\4

Page description level

Allowed operators:

+ General graphics state
« Special graphics state
« Color

- Text state

+ Marked-content

- ID

In-line image object

Allowed operators:

BI Do

A

ET
¢ Shading object
sh Allowed operators:
> . None
. (immediate)
(immediate)

Y

External object

Allowed operators:
- None

EXAMPLE

NOTE

Figure 9 — Graphics Objects

The path construction operators m and re signal the beginning of a path object. Inside the path object,
additional path construction operators are permitted, as are the clipping path operators W and W*, but not
general graphics state operators such as w or J. A path-painting operator, such as S or f, ends the path
object and returns to the page description level.

A conforming reader may process a content stream whose operations violate these rules for describing
graphics objects and can produce unpredictable behaviour, even though it may display and print the stream
correctly. Applications that attempt to extract graphics objects for editing or other purposes depend on the
objects’ being well formed. The rules for graphics objects are also important for the proper interpretation of
marked content (see 14.6, "Marked Content").

A graphics object also implicitly includes all graphics state parameters that affect its behaviour. For instance, a
path object depends on the value of the current colour parameter at the moment the path object is defined. The
effect shall be as if this parameter were specified as part of the definition of the path object. However, the
operators that are invoked at the page description level to set graphics state parameters shall not be

o Adobe Systems Incorporated 2008 — All rights reserved

113

PDF 32000-1:2008

considered to belong to any particular graphics object. Graphics state parameters should be specified only
when they change. A graphics object can depend on parameters that were defined much earlier.

Similarly, the individual character strings within a text object implicitly include the graphics state parameters on
which they depend. Most of these parameters may be set inside or outside the text object. The effect is as if
they were separately specified for each text string.

The important point is that there is no semantic significance to the exact arrangement of graphics state
operators. A conforming reader or writer of a PDF content stream may change an arrangement of graphics
state operators to any other arrangement that achieves the same values of the relevant graphics state
parameters for each graphics object. A conforming reader or writer shall not infer any higher-level logical
semantics from the arrangement of tokens constituting a graphics object. A separate mechanism, marked
content (see 14.6, "Marked Content"), allows such higher-level information to be explicitly associated with the
graphics objects.

8.3 Coordinate Systems

8.3.1 General

Coordinate systems define the canvas on which all painting occurs. They determine the position, orientation,
and size of the text, graphics, and images that appear on a page. This sub-clause describes each of the
coordinate systems used in PDF, how they are related, and how transformations among them are specified.

NOTE The coordinate systems discussed in this sub-clause apply to two-dimensional graphics. PDF 1.6 introduced
the ability to display 3D artwork, in which objects are described in a three-dimensional coordinate system, as
described in 13.6.5, "Coordinate Systems for 3D".

8.3.2 Coordinate Spaces

8.3.2.1 General

Paths and positions shall be defined in terms of pairs of coordinates on the Cartesian plane. A coordinate pair
is a pair of real numbers x and y that locate a point horizontally and vertically within a two-dimensional
coordinate space. A coordinate space is determined by the following properties with respect to the current

page:
e The location of the origin

e The orientation of the x and y axes

* The lengths of the units along each axis

PDF defines several coordinate spaces in which the coordinates specifying graphics objects shall be
interpreted. The following sub-clauses describe these spaces and the relationships among them.

Transformations among coordinate spaces shall be defined by transformation matrices, which can specify any
linear mapping of two-dimensional coordinates, including translation, scaling, rotation, reflection, and skewing.
Transformation matrices are discussed in 8.3.3, "Common Transformations" and 8.3.4, "Transformation
Matrices".

8.3.2.2 Device Space

The contents of a page ultimately appear on a raster output device such as a display or a printer. Such devices
vary greatly in the built-in coordinate systems they use to address pixels within their imageable areas. A
particular device’s coordinate system is called its device space. The origin of the device space on different
devices can fall in different places on the output page; on displays, the origin can vary depending on the
window system. Because the paper or other output medium moves through different printers and imagesetters
in different directions, the axes of their device spaces may be oriented differently. For instance, vertical (y)

114 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

coordinates may increase from the top of the page to the bottom on some devices and from bottom to top on
others. Finally, different devices have different resolutions; some even have resolutions that differ in the
horizontal and vertical directions.

NOTE If coordinates in a PDF file were specified in device space, the file would be device-dependent and would
appear differently on different devices.

EXAMPLE Images specified in the typical device spaces of a 72-pixel-per-inch display and a 600-dot-per-inch printer
would differ in size by more than a factor of 8; an 8-inch line segment on the display would appear less
than 1 inch long on the printer. Figure 10 in Annex L shows how the same graphics object, specified in
device space, can appear drastically different when rendered on different output devices.

| & |
1 4

Device space for Device space for
72-dpi screen 300-dpi printer

Figure 10 — Device Space

8.3.2.3 User Space

To avoid the device-dependent effects of specifying objects in device space, PDF defines a device-independent
coordinate system that always bears the same relationship to the current page, regardless of the output device
on which printing or displaying occurs. This device-independent coordinate system is called user space.

The user space coordinate system shall be initialized to a default state for each page of a document. The
CropBox entry in the page dictionary shall specify the rectangle of user space corresponding to the visible
area of the intended output medium (display window or printed page). The positive x axis extends horizontally
to the right and the positive y axis vertically upward, as in standard mathematical practice (subject to alteration
by the Rotate entry in the page dictionary). The length of a unit along both the x and y axes is set by the
UserUnit entry (PDF 1.6) in the page dictionary (see Table 30). If that entry is not present or supported, the
default value of 1/72 inch is used. This coordinate system is called default user space.

NOTE 1 In PostScript, the origin of default user space always corresponds to the lower-left corner of the output
medium. While this convention is common in PDF documents as well, it is not required; the page dictionary’s
CropBox entry can specify any rectangle of default user space to be made visible on the medium.

NOTE 2 The default for the size of the unit in default user space (1/72 inch) is approximately the same as a point, a unit
widely used in the printing industry. It is not exactly the same, however; there is no universal definition of a
point.

Conceptually, user space is an infinite plane. Only a small portion of this plane corresponds to the imageable
area of the output device: a rectangular region defined by the CropBox entry in the page dictionary. The region
of default user space that is viewed or printed can be different for each page and is described in 14.11.2, "Page
Boundaries".

Coordinates in user space (as in any other coordinate space) may be specified as either integers or real

numbers, and the unit size in default user space does not constrain positions to any arbitrary grid. The
resolution of coordinates in user space is not related in any way to the resolution of pixels in device space.

o Adobe Systems Incorporated 2008 — All rights reserved 115

PDF 32000-1:2008

The transformation from user space to device space is defined by the current transformation matrix (CTM), an
element of the PDF graphics state (see 8.4, "Graphics State"). A conforming reader can adjust the CTM for the
native resolution of a particular output device, maintaining the device-independence of the PDF page
description. Figure 11 in Annex L shows how this allows an object specified in user space to appear the same
regardless of the device on which it is rendered.

NOTE 3 The default user space provides a consistent, dependable starting place for PDF page descriptions regardless
of the output device used. If necessary, a PDF content stream may modify user space to be more suitable to its
needs by applying the coordinate transformation operator, cm (see 8.4.4, "Graphics State Operators"). Thus,
what may appear to be absolute coordinates in a content stream are not absolute with respect to the current
page because they are expressed in a coordinate system that may slide around and shrink or expand.
Coordinate system transformation not only enhances device-independence but is a useful tool in its own right.

EXAMPLE A content stream originally composed to occupy an entire page can be incorporated without change as an
element of another page by shrinking the coordinate system in which it is drawn.

| B |
1 81

Device space for
72-dpi screen

| B B
1 § |

User space

Device space for
300-dpi printer

Figure 11 — User Space

8.3.2.4 Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate spaces for specialized
purposes:

« The coordinates of text shall be specified in text space. The transformation from text space to user space
shall be defined by a text matrix in combination with several text-related parameters in the graphics state
(see 9.4.2, "Text-Positioning Operators").

e Character glyphs in a font shall be defined in glyph space (see 9.2.4, "Glyph Positioning and Metrics"). The
transformation from glyph space to text space shall be defined by the font matrix. For most types of fonts,
this matrix shall be predefined to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix shall be given explicitly in the font dictionary (see 9.6.5, "Type 3 Fonts").

» All sampled images shall be defined in image space. The transformation from image space to user space
shall be predefined and cannot be changed. All images shall be 1 unit wide by 1 unit high in user space,

116 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

regardless of the number of samples in the image. To be painted, an image shall be mapped to a region of
the page by temporarily altering the CTM.

» Aform XObject (discussed in 8.10, "Form XObjects") is a self-contained content stream that can be treated
as a graphical element within another content stream. The space in which it is defined is called form space.
The transformation from form space to user space shall be specified by a form matrix contained in the form
XObiject.

« PDF 1.2 defined a type of colour known as a pattern, discussed in 8.7, "Patterns”. A pattern shall be
defined either by a content stream that shall be invoked repeatedly to tile an area or by a shading whose
colour is a function of position. The space in which a pattern is defined is called pattern space. The
transformation from pattern space to user space shall be specified by a pattern matrix contained in the
pattern.

» PDF 1.6 embedded 3D artwork, which is described in three-dimensional coordinates (see 13.6.5,

"Coordinate Systems for 3D") that are projected into an annotation’s target coordinate system (see 13.6.2,
"3D Annotations").

8.3.2.5 Relationships among Coordinate Spaces

Figure 12 in Annex L shows the relationships among the coordinate spaces described above. Each arrow in the
figure represents a transformation from one coordinate space to another. PDF allows modifications to many of
these transformations.

Because PDF coordinate spaces are defined relative to one another, changes made to one transformation can
affect the appearance of objects defined in several coordinate spaces.

EXAMPLE A change in the CTM, which defines the transformation from user space to device space, affects forms,
text, images, and patterns, since they are all upstream from user space.

8.3.3 Common Transformations

A transformation matrix specifies the relationship between two coordinate spaces. By modifying a
transformation matrix, objects can be scaled, rotated, translated, or transformed in other ways.

Form |
space
Glyph Text
space space L]
User Device
e space space
Image
space
Pattern L]

space

Figure 12 — Relationships Among Coordinate Systems

A transformation matrix in PDF shall be specified by six numbers, usually in the form of an array containing six
elements. In its most general form, this array is denoted [a b ¢ d e f]; it can represent any linear
transformation from one coordinate system to another. This sub-clause lists the arrays that specify the most
common transformations; 8.3.4, "Transformation Matrices", discusses more mathematical details of
transformations, including information on specifying transformations that are combinations of those listed here:

o Adobe Systems Incorporated 2008 — All rights reserved 117

PDF 32000-1:2008

» Translations shall be specified as [1 0 0 1 t, ty], where t, and ty shall be the distances to translate the
origin of the coordinate system in the horizontal and vertical dimensions, respectively.

» Scaling shall be obtained by [s, 0 0 Sy 0 0]. This scales the coordinates so that 1 unit in the horizontal
and vertical dimensions of the new coordinate system is the same size as s, and Sy units, respectively, in
the previous coordinate system.

» Rotations shall be produced by [cosq sing -sing cos g 0 0], which has the effect of rotating the
coordinate system axes by an angle g counter clockwise.

» Skew shall be specified by [1 tana tanb 1 0 0], which skews the x axis by an angle a and the y axis by
an angle b.

Figure 13 in Annex L shows examples of each transformation. The directions of translation, rotation, and skew
shown in the figure correspond to positive values of the array elements.

Translation Scaling Rotation Skewing

Figure 13 — Effects of Coordinate Transformations

NOTE If several transformations are combined, the order in which they are applied is significant. For example, first
scaling and then translating the x axis is not the same as first translating and then scaling it. In general, to
obtain the expected results, transformations should be done in the following order: Translate, Rotate, Scale or
skew.

Figure 14 in Annex L shows the effect of the order in which transformations are applied. The figure shows two

sequences of transformations applied to a coordinate system. After each successive transformation, an outline
of the letter n is drawn.

118 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

' T

' \

' \
,,,,,, : X

' e \

' \

'

Original Step 1:Translation Step 2: Rotation Step 3: Scaling

Original Step 1: Scaling Step 2: Rotation Step 3: Translation

Figure 14 — Effect of Transformation Order

NOTE The following transformations are shown in the figure: a translation of 10 units in the x direction and 20 units in
the y direction; a rotation of 30 degrees; a scaling by a factor of 3 in the x direction

In the figure, the axes are shown with a dash pattern having a 2-unit dash and a 2-unit gap. In addition, the
original (untransformed) axes are shown in a lighter colour for reference. Notice that the scale-rotate-translate
ordering results in a distortion of the coordinate system, leaving the x and y axes no longer perpendicular; the
recommended translate-rotate-scale ordering results in no distortion.

8.34 Transformation Matrices
This sub-clause discusses the mathematics of transformation matrices.
To understand the mathematics of coordinate transformations in PDF, it is vital to remember two points:

» Transformations alter coordinate systems, not graphics objects. All objects painted before a transformation
is applied shall be unaffected by the transformation. Objects painted after the transformation is applied
shall be interpreted in the transformed coordinate system.

« Transformation matrices specify the transformation from the new (transformed) coordinate system to the
original (untransformed) coordinate system. All coordinates used after the transformation shall be
expressed in the transformed coordinate system. PDF applies the transformation matrix to find the
equivalent coordinates in the untransformed coordinate system.

NOTE 1 Many computer graphics textbooks consider transformations of graphics objects rather than of coordinate
systems. Although either approach is correct and self-consistent, some details of the calculations differ
depending on which point of view is taken.

PDF represents coordinates in a two-dimensional space. The point (X, y) in such a space can be expressed in
vector form as [x y 1]. The constant third element of this vector (1) is needed so that the vector can be used
with 3-by-3 matrices in the calculations described below.

The transformation between two coordinate systems can be represented by a 3-by-3 transformation matrix
written as follows:

o Adobe Systems Incorporated 2008 — All rights reserved 119

PDF 32000-1:2008

® O @©
- O O
= O O

Because a transformation matrix has only six elements that can be changed, in most cases in PDF it shall be
specified as the six-elementarray[a b ¢ d e f].

Coordinate transformations shall be expressed as matrix multiplications:

a
[x"y" 1] =[xy 1] x | ¢
e

- O T
= O O

Because PDF transformation matrices specify the conversion from the transformed coordinate system to the
original (untransformed) coordinate system, x¢ and y¢ in this equation shall be the coordinates in the
untransformed coordinate system, and x and y shall be the coordinates in the transformed system. The
multiplication is carried out as follows:

axX+Ccxy+e
y' = bxx+dxy+f

If a series of transformations is carried out, the matrices representing each of the individual transformations can
be multiplied together to produce a single equivalent matrix representing the composite transformation.

NOTE 2 Matrix multiplication is not commutative—the order in which matrices are multiplied is significant. Consider a
sequence of two transformations: a scaling transformation applied to the user space coordinate system,
followed by a conversion from the resulting scaled user space to device space. Let Mg be the matrix specifying

the scaling and M the current transformation matrix, which transforms user space to device space. Recalling

that coordinates are always specified in the transformed space, the correct order of transformations first
converts the scaled coordinates to default user space and then converts the default user space coordinates to
device space. This can be expressed as

Xp = XyxMg = (XgxMg) x M = Xg x (Mg x M¢
where

Xp denotes the coordinates in device space

X denotes the coordinates in default user space

Xg denotes the coordinates in scaled user space

This shows that when a new transformation is concatenated with an existing one, the matrix representing it
shall be multiplied before (premultiplied with) the existing transformation matrix.

This result is true in general for PDF: when a sequence of transformations is carried out, the matrix
representing the combined transformation (M¢) is calculated by premultiplying the matrix representing the
additional transformation (M) with the one representing all previously existing transformations (M):

M" = My xM

NOTE 3 When rendering graphics objects, it is sometimes necessary for a conforming reader to perform the inverse of
a transformation—that is, to find the user space coordinates that correspond to a given pair of device space

120 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

coordinates. Not all transformations are invertible, however. For example, if a matrix contains a, b, ¢, and d
elements that are all zero, all user coordinates map to the same device coordinates and there is no unique
inverse transformation. Such noninvertible transformations are not very useful and generally arise from
unintended operations, such as scaling by 0. Use of a noninvertible matrix when painting graphics objects can
result in unpredictable behaviour.

8.4 Graphics State

8.4.1 General

A conforming reader shall maintain an internal data structure called the graphics state that holds current
graphics control parameters. These parameters define the global framework within which the graphics
operators execute.

EXAMPLE 1 The f (fill) operator implicitly uses the current colour parameter, and the S (stroke) operator additionally
uses the current line width parameter from the graphics state.

A conforming reader shall initialize the graphic state at the beginning of each page with the values specified in
Table 52 and Table 53. Table 52 lists those graphics state parameters that are device-independent and are
appropriate to specify in page descriptions. The parameters listed in Table 53 control details of the rendering
(scan conversion) process and are device-dependent; a page description that is intended to be device-
independent should not be written to modify these parameters.

Table 52 — Device-Independent Graphics State Parameters

Parameter Type Value

CTM array The current transformation matrix, which maps positions from
user coordinates to device coordinates (see 8.3, "Coordinate
Systems"). This matrix is modified by each application of the
coordinate transformation operator, cm. Initial value: a matrix
that transforms default user coordinates to device
coordinates.

clipping path (internal) The current clipping path, which defines the boundary against
which all output shall be cropped (see 8.5.4, "Clipping Path
Operators”). Initial value: the boundary of the entire
imageable portion of the output page.

color space name or array The current colour space in which colour values shall be
interpreted (see 8.6, "Colour Spaces"). There are two
separate colour space parameters: one for stroking and one
for all other painting operations. Initial value: DeviceGray.

color (various) The current colour to be used during painting operations (see
8.6, "Colour Spaces"). The type and interpretation of this
parameter depend on the current colour space; for most
colour spaces, a colour value consists of one to four
numbers. There are two separate colour parameters: one for
stroking and one for all other painting operations. Initial value:
black.

text state (various) A set of nine graphics state parameters that pertain only to
the painting of text. These include parameters that select the
font, scale the glyphs to an appropriate size, and accomplish
other effects. The text state parameters are described in 9.3,
"Text State Parameters and Operators".

line width number The thickness, in user space units, of paths to be stroked
(see 8.4.3.2, "Line Width"). Initial value: 1.0.

o Adobe Systems Incorporated 2008 — All rights reserved 121

PDF 32000-1:2008

Table 52 — Device-Independent Graphics State Parameters (continued)

Parameter Type Value

line cap integer A code specifying the shape of the endpoints for any open
path that is stroked (see 8.4.3.3, "Line Cap Style"). Initial
value: 0, for square butt caps.

line join integer A code specifying the shape of joints between connected
segments of a stroked path (see 8.4.3.4, "Line Join Style").
Initial value: 0, for mitered joins.

miter limit number The maximum length of mitered line joins for stroked paths
(see 8.4.3.5, "Miter Limit"). This parameter limits the length of
“spikes” produced when line segments join at sharp angles.
Initial value: 10.0, for a miter cutoff below approximately 11.5

degrees.
dash pattern array and A description of the dash pattern to be used when paths are
number stroked (see 8.4.3.6, "Line Dash Pattern"). Initial value: a

solid line.
rendering intent name The rendering intent to be used when converting CIE-based

colours to device colours (see 8.6.5.8, "Rendering Intents").
Initial value: RelativeColorimetric.

stroke adjustment boolean (PDF 1.2) A flag specifying whether to compensate for
possible rasterization effects when stroking a path with a line
width that is small relative to the pixel resolution of the output
device (see 10.6.5, "Automatic Stroke Adjustment").

NOTE This is considered a device-independent

parameter, even though the details of its effects
are device-dependent.

Initial value: false.

blend mode name or array (PDF 1.4) The current blend mode to be used in the
transparent imaging model (see 11.3.5, "Blend Mode" and
11.6.3, "Specifying Blending Colour Space and Blend Mode").
A conforming reader shall implicitly reset this parameter to its
initial value at the beginning of execution of a transparency
group XObject (see 11.6.6, "Transparency Group XObjects").
Initial value: Normal.

soft mask dictionary (PDF 1.4) A soft-mask dictionary (see 11.6.5.2, "Soft-Mask
or name Dictionaries") specifying the mask shape or mask opacity
values to be used in the transparent imaging model (see
11.3.7.2, "Source Shape and Opacity" and 11.6.4.3, "Mask
Shape and Opacity"), or the name None if no such mask is
specified. A conforming reader shall implicitly reset this
parameter implicitly reset to its initial value at the beginning of
execution of a transparency group XObject (see 11.6.6,
"Transparency Group XObjects"). Initial value: None.

alpha constant number (PDF 1.4) The constant shape or constant opacity value to be
used in the transparent imaging model (see 11.3.7.2, "Source
Shape and Opacity" and 11.6.4.4, "Constant Shape and
Opacity"). There are two separate alpha constant
parameters: one for stroking and one for all other painting
operations. A conforming reader shall implicitly reset this
parameter to its initial value at the beginning of execution of a
transparency group XObject (see 11.6.6, "Transparency
Group XObjects"). Initial value: 1.0.

122 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 52 — Device-Independent Graphics State Parameters (continued)

Parameter

Type

Value

alpha source

boolean

(PDF 1.4) A flag specifying whether the current soft mask and
alpha constant parameters shall be interpreted as shape
values (true) or opacity values (false). This flag also governs
the interpretation of the SMask entry, if any, in an image
dictionary (see 8.9.5, "Image Dictionaries"). Initial value:
false.

Table 53 — Device-Dependent Graphics State Parameters

Parameter

Type

Value

overprint

boolean

(PDF 1.2) A flag specifying (on output devices that support
the overprint control feature) whether painting in one set of
colorants should cause the corresponding areas of other
colorants to be erased (false) or left unchanged (true); see
8.6.7, "Overprint Control". In PDF 1.3, there are two separate
overprint parameters: one for stroking and one for all other
painting operations. Initial value: false.

overprint mode

number

(PDF 1.3) A code specifying whether a colour component
value of 0 in a DeviceCMYK colour space should erase that
component (0) or leave it unchanged (1) when overprinting
(see 8.6.7, "Overprint Control"). Initial value: 0.

black generation

function
or name

(PDF 1.2) A function that calculates the level of the black
colour component to use when converting RGB colours to
CMYK (see 10.3.4, "Conversion from DeviceRGB to
DeviceCMYK"). Initial value: a conforming reader shall
initialize this to a suitable device dependent value.

undercolor removal

function
or name

(PDF 1.2) A function that calculates the reduction in the
levels of the cyan, magenta, and yellow colour components to
compensate for the amount of black added by black
generation (see 10.3.4, "Conversion from DeviceRGB to
DeviceCMYK"). Initial value: a conforming reader shall
initialize this to a suitable device dependent value.

transfer

function,
array, or name

(PDF 1.2) A function that adjusts device gray or colour
component levels to compensate for nonlinear response in a
particular output device (see 10.4, “Transfer Functions®).
Initial value: a conforming reader shall initialize this to a
suitable device dependent value.

halftone

dictionary,
stream, or name

(PDF 1.2) A halftone screen for gray and colour rendering,
specified as a halftone dictionary or stream (see 10.5,
"Halftones"). Initial value: a conforming reader shall initialize
this to a suitable device dependent value.

flatness

number

The precision with which curves shall be rendered on the
output device (see 10.6.2, "Flatness Tolerance"). The value
of this parameter (positive number) gives the maximum error
tolerance, measured in output device pixels; smaller numbers
give smoother curves at the expense of more computation
and memory use. Initial value: 1.0.

o Adobe Systems Incorporated 2008 — All rights reserved

123

PDF 32000-1:2008

Table 53 — Device-Dependent Graphics State Parameters (continued)

Parameter Type Value

smoothness number (PDF 1.3) The precision with which colour gradients are to be
rendered on the output device (see 10.6.3, "Smoothness
Tolerance"). The value of this parameter (0 to 1.0) gives the
maximum error tolerance, expressed as a fraction of the
range of each colour component; smaller numbers give
smoother colour transitions at the expense of more
computation and memory use. Initial value: a conforming
reader shall initialize this to a suitable device dependent
value.

NOTE 1 Some graphics state parameters are set with specific PDF operators, some are set by including a particular
entry in a graphics state parameter dictionary, and some can be specified either way.

EXAMPLE 2 The current line width can be set either with the w operator or (in PDF 1.3) with the LW entry in a graphics
state parameter dictionary, whereas the current colour is set only with specific operators, and the current
halftone is set only with a graphics state parameter dictionary.

In general, a conforming reader, when interpreting the operators that set graphics state parameters, shall
simply store them unchanged for later use when interpreting the painting operators.However, some parameters
have special properties or call for behaviour that a conforming reader shall handle:

. Most parameters shall be of the correct type or have values that fall within a certain range.

» Parameters that are numeric values, such as the current colour, line width, and miter limit, shall be forced
into valid range, if necessary. However, they shall not be adjusted to reflect capabilities of the raster output
device, such as resolution or number of distinguishable colours. Painting operators perform such
adjustments, but the adjusted values shall not be stored back into the graphics state.

» Paths shall be internal objects that shall not be directly represented in PDF.

NOTE 2 As indicated in Table 52 and Table 53, some of the parameters—color space, color, and overprint—have two
values, one used for stroking (of paths and text objects) and one for all other painting operations. The two
parameter values can be set independently, allowing for operations such as combined filling and stroking of the
same path with different colours. Except where noted, a term such as current colour should be interpreted to
refer to whichever colour parameter applies to the operation being performed. When necessary, the individual
colour parameters are distinguished explicitly as the stroking colour and the nonstroking colour.

8.4.2 Graphics State Stack

A PDF document typically contains many graphical elements that are independent of each other and nested to
multiple levels. The graphics state stack allows these elements to make local changes to the graphics state
without disturbing the graphics state of the surrounding environment. The stack is a LIFO (last in, first out) data
structure in which the contents of the graphics state may be saved and later restored using the following
operators:

e The g operator shall push a copy of the entire graphics state onto the stack.
e The Q operator shall restore the entire graphics state to its former value by popping it from the stack.

NOTE These operators can be used to encapsulate a graphical element so that it can modify parameters of the
graphics state and later restore them to their previous values.

Occurrences of the g and Q operators shall be balanced within a given content stream (or within the sequence
of streams specified in a page dictionary’s Contents array).

124 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

8.4.3 Details of Graphics State Parameters

8.4.3.1 General

This sub-clause gives details of several of the device-independent graphics state parameters listed in Table 52.

8.4.3.2 Line Width

The line width parameter specifies the thickness of the line used to stroke a path. It shall be a non-negative
number expressed in user space units; stroking a path shall entail painting all points whose perpendicular
distance from the path in user space is less than or equal to half the line width. The effect produced in device
space depends on the current transformation matrix (CTM) in effect at the time the path is stroked. If the CTM
specifies scaling by different factors in the horizontal and vertical dimensions, the thickness of stroked lines in
device space shall vary according to their orientation. The actual line width achieved can differ from the
requested width by as much as 2 device pixels, depending on the positions of lines with respect to the pixel
grid. Automatic stroke adjustment may be used to ensure uniform line width; see 10.6.5, "Automatic Stroke
Adjustment"”.

A line width of 0 shall denote the thinnest line that can be rendered at device resolution: 1 device pixel wide.

However, some devices cannot reproduce 1-pixel lines, and on high-resolution devices, they are nearly
invisible. Since the results of rendering such zero-width lines are device-dependent, they should not be used.

8.4.3.3 Line Cap Style

The line cap style shall specify the shape that shall be used at the ends of open subpaths (and dashes, if any)
when they are stroked. Table 54 shows the possible values.

Table 54 — Line Cap Styles

Style Appearance Description

Butt cap. The stroke shall be squared off at the endpoint of the path.
There shall be no projection beyond the end of the path.

Round cap. A semicircular arc with a diameter equal to the line width
shall be drawn around the endpoint and shall be filled in.

Projecting square cap. The stroke shall continue beyond the endpoint
of the path for a distance equal to half the line width and shall be
squared off.

1

8.4.3.4 Line Join Style

The line join style shall specify the shape to be used at the corners of paths that are stroked. Table 55 shows
the possible values. Join styles shall be significant only at points where consecutive segments of a path
connect at an angle; segments that meet or intersect fortuitously shall receive no special treatment.

Table 55 — Line Join Styles

Style Appearance Description

0 Miter join. The outer edges of the strokes for the two segments shall be
extended until they meet at an angle, as in a picture frame. If the
segments meet at too sharp an angle (as defined by the miter limit
parameter—see 8.4.3.5, "Miter Limit"), a bevel join shall be used
instead.

o Adobe Systems Incorporated 2008 — All rights reserved 125

PDF 32000-1:2008

Table 55 — Line Join Styles (continued)

Style Appearance Description

Round join. An arc of a circle with a diameter equal to the line width

shall be drawn around the point where the two segments meet,
connecting the outer edges of the strokes for the two segments. This
pieslice-shaped figure shall be filled in, producing a rounded corner.

Bevel join. The two segments shall be finished with butt caps (see
8.4.3.3, "Line Cap Style") and the resulting notch beyond the ends of
the segments shall be filled with a triangle.

NOTE The definition of round join was changed in PDF 1.5. In rare cases, the implementation of the previous
specification could produce unexpected results.

8.4.3.5 Miter Limit

When two line segments meet at a sharp angle and mitered joins have been specified as the line join style, it is
possible for the miter to extend far beyond the thickness of the line stroking the path. The miter limit shall
impose a maximum on the ratio of the miter length to the line width (see Figure 15 in Annex L). When the limit
is exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle j between the segments in user space by
the following formula:

miterLength _ 1
lineWidth in[@
sm(2)

EXAMPLE A miter limit of 1.414 converts miters to bevels for j less than 90 degrees, a limit of 2.0 converts them for |
less than 60 degrees, and a limit of 10.0 converts them for j less than approximately 11.5 degrees.

Line width

Figure 15 — Miter Length

8.4.3.6 Line Dash Pattern

The line dash pattern shall control the pattern of dashes and gaps used to stroke paths. It shall be specified by
a dash array and a dash phase. The dash array’s elements shall be numbers that specify the lengths of
alternating dashes and gaps; the numbers shall be nonnegative and not all zero. The dash phase shall specify
the distance into the dash pattern at which to start the dash. The elements of both the dash array and the dash
phase shall be expressed in user space units.

Before beginning to stroke a path, the dash array shall be cycled through, adding up the lengths of dashes and

gaps. When the accumulated length equals the value specified by the dash phase, stroking of the path shall
begin, and the dash array shall be used cyclically from that point onward. Table 56 shows examples of line

126 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

dash patterns. As can be seen from the table, an empty dash array and zero phase can be used to restore the

dash pattern to a solid line.

Table 56 — Examples of Line Dash Patterns

Dash Array Appearance Description

and Phase

[1O I No dash; solid, unbroken lines
[3] 0 Bl e = 3 units on, 3 units off, ...

[2] 1 T N 1 on, 2 off, 2 on, 2 off, ...
[21]0 [O N N N 2o0n, 1off,20n, 1off, ...
[35]6 N @ s 2 off, 3 on, 5 off, 3 0n, 5 off, ...
(23] 11 HE B BN 1on, 3off, 2 0n, 3 off, 2 0n, ...

Dashed lines shall wrap around curves and corners just as solid stroked lines do. The ends of each dash shall
be treated with the current line cap style, and corners within dashes shall be treated with the current line join
style. A stroking operation shall take no measures to coordinate the dash pattern with features of the path; it
simply shall dispense dashes and gaps along the path in the pattern defined by the dash array.

When a path consisting of several subpaths is stroked, each subpath shall be treated independently—that is,
the dash pattern shall be restarted and the dash phase shall be reapplied to it at the beginning of each subpath.

8.4.4

Graphics State Operators

Table 57 shows the operators that set the values of parameters in the graphics state. (See also the colour
operators listed in Table 74 and the text state operators in Table 105.)

Table 57 — Graphics State Operators

Operands

Operator

Description

q

Save the current graphics state on the graphics state stack (see
8.4.2, "Graphics State Stack").

Q

Restore the graphics state by removing the most recently saved
state from the stack and making it the current state (see 8.4.2,
"Graphics State Stack").

abcdef

cm

Modify the current transformation matrix (CTM) by concatenating
the specified matrix (see 8.3.2, "Coordinate Spaces"). Although the
operands specify a matrix, they shall be written as six separate
numbers, not as an array.

lineWidth

Set the line width in the graphics state (see 8.4.3.2, "Line Width").

lineCap

Set the line cap style in the graphics state (see 8.4.3.3, "Line Cap
Style").

lineJoin

Set the line join style in the graphics state (see 8.4.3.4, "Line Join
Style").

miterLimit

Set the miter limit in the graphics state (see 8.4.3.5, "Miter Limit").

dashArray dashPhase

Set the line dash pattern in the graphics state (see 8.4.3.6, "Line
Dash Pattern").

intent

ri

(PDF 1.1) Set the colour rendering intent in the graphics state (see
8.6.5.8, "Rendering Intents").

o Adobe Systems Incorporated 2008 — All rights reserved

127

PDF 32000-1:2008

Table 57 — Graphics State Operators (continued)

Operands Operator Description

flatness i Set the flathess tolerance in the graphics state (see 10.6.2,
"Flatness Tolerance"). flatness is a number in the range 0 to 100; a
value of 0 shall specify the output device’'s default flatness
tolerance.

dictName gs (PDF 1.2) Set the specified parameters in the graphics state.
dictName shall be the name of a graphics state parameter
dictionary in the ExtGState subdictionary of the current resource
dictionary (see the next sub-clause).

8.4.5 Graphics State Parameter Dictionaries

While some parameters in the graphics state may be set with individual operators, as shown in Table 57, others
may not. The latter may only be set with the generic graphics state operator gs (PDF 1.2). The operand
supplied to this operator shall be the name of a graphics state parameter dictionary whose contents specify the
values of one or more graphics state parameters. This name shall be looked up in the ExtGState subdictionary
of the current resource dictionary.

The graphics state parameter dictionary is also used by type 2 patterns, which do not have a content stream in
which the graphics state operators could be invoked (see 8.7.4, "Shading Patterns").

Each entry in the parameter dictionary shall specify the value of an individual graphics state parameter, as
shown in Table 58. All entries need not be present for every invocation of the gs operator; the supplied
parameter dictionary may include any combination of parameter entries. The results of gs shall be cumulative;
parameter values established in previous invocations persist until explicitly overridden.

NOTE Note that some parameters appear in both Table 57 and Table 58; these parameters can be set either with
individual graphics state operators or with gs. It is expected that any future extensions to the graphics state will
be implemented by adding new entries to the graphics state parameter dictionary rather than by introducing
new graphics state operators.

Table 58 — Entries in a Graphics State Parameter Dictionary

Key Type Description

Type name (Optional) The type of PDF object that this dictionary describes; shall
be ExtGState for a graphics state parameter dictionary.

LW number (Optional; PDF 1.3) The line width (see 8.4.3.2, "Line Width").

LC integer (Optional; PDF 1.3) The line cap style (see 8.4.3.3, "Line Cap Style").

LJ integer (Optional; PDF 1.3) The line join style (see 8.4.3.4, "Line Join Style").

ML number (Optional; PDF 1.3) The miter limit (see 8.4.3.5, "Miter Limit").

D array (Optional; PDF 1.3) The line dash pattern, expressed as an array of

the form [dashArray dashPhase], where dashArray shall be itself an
array and dashPhase shall be an integer (see 8.4.3.6, "Line Dash
Pattern™).

RI name (Optional; PDF 1.3) The name of the rendering intent (see 8.6.5.8,
"Rendering Intents").

128 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 58 — Entries in a Graphics State Parameter Dictionary (continued)

Key

Type

Description

OoP

boolean

(Optional) A flag specifying whether to apply overprint (see 8.6.7,
"Overprint Control"). In PDF 1.2 and earlier, there is a single overprint
parameter that applies to all painting operations. Beginning with PDF
1.3, there shall be two separate overprint parameters: one for stroking
and one for all other painting operations. Specifying an OP entry shall
set both parameters unless there is also an op entry in the same
graphics state parameter dictionary, in which case the OP entry shall
set only the overprint parameter for stroking.

op

boolean

(Optional; PDF 1.3) A flag specifying whether to apply overprint (see
8.6.7, "Overprint Control") for painting operations other than stroking. If
this entry is absent, the OP entry, if any, shall also set this parameter.

OPM

integer

(Optional; PDF 1.3) The overprint mode (see 8.6.7, "Overprint
Control").

Font

array

(Optional; PDF 1.3) An array of the form [font size], where font shall
be an indirect reference to a font dictionary and size shall be a number
expressed in text space units. These two objects correspond to the
operands of the Tf operator (see 9.3, "Text State Parameters and
Operators"); however, the first operand shall be an indirect object
reference instead of a resource name.

BG

function

(Optional) The black-generation function, which maps the interval
[0.0 1.0] to the interval [0.0 1.0] (see 10.3.4, "Conversion from
DeviceRGB to DeviceCMYK").

BG2

function or name

(Optional; PDF 1.3) Same as BG except that the value may also be
the name Default, denoting the black-generation function that was in
effect at the start of the page. If both BG and BG2 are present in the
same graphics state parameter dictionary, BG2 shall take precedence.

UCR

function

(Optional) The undercolor-removal function, which maps the interval
[0.0 1.0] to the interval [-1.0 1.0] (see 10.3.4, "Conversion from
DeviceRGB to DeviceCMYK").

UCR2

function or name

(Optional; PDF 1.3) Same as UCR except that the value may also be
the name Default, denoting the undercolor-removal function that was
in effect at the start of the page. If both UCR and UCR2 are present in
the same graphics state parameter dictionary, UCR2 shall take
precedence.

TR

function, array, or
name

(Optional) The transfer function, which maps the interval [0.0 1.0] to
the interval [0.0 1.0] (see 10.4, "Transfer Functions"). The value shall
be either a single function (which applies to all process colorants) or
an array of four functions (which apply to the process colorants
individually). The name Identity may be used to represent the identity
function.

TR2

function, array, or
name

(Optional; PDF 1.3) Same as TR except that the value may also be the
name Default, denoting the transfer function that was in effect at the
start of the page. If both TR and TR2 are present in the same graphics
state parameter dictionary, TR2 shall take precedence.

HT

dictionary,
stream, or name

(Optional) The halftone dictionary or stream (see 10.5, "Halftones") or
the name Default, denoting the halftone that was in effect at the start of
the page.

FL

number

(Optional; PDF 1.3) The flatness tolerance (see 10.6.2, "Flatness
Tolerance").

SM

number

(Optional; PDF 1.3) The smoothness tolerance

"Smoothness Tolerance").

(see 10.6.3,

o Adobe Systems Incorporated 2008 — All rights reserved

129

PDF 32000-1:2008

Table 58 — Entries in a Graphics State Parameter Dictionary (continued)

Key

Type Description

SA

boolean (Optional) A flag specifying whether to apply automatic stroke
adjustment (see 10.6.5, "Automatic Stroke Adjustment").

BM

name or array (Optional; PDF 1.4) The current blend mode to be used in the
transparent imaging model (see 11.3.5, "Blend Mode" and 11.6.3,
"Specifying Blending Colour Space and Blend Mode").

SMask

dictionary or | (Optional; PDF 1.4) The current soft mask, specifying the mask shape
name or mask opacity values that shall be used in the transparent imaging
model (see 11.3.7.2, "Source Shape and Opacity" and 11.6.4.3, "Mask
Shape and Opacity").

Although the current soft mask is sometimes referred to as a “soft clip,”
altering it with the gs operator completely replaces the old value with
the new one, rather than intersecting the two as is done with the
current clipping path parameter (see 8.5.4, "Clipping Path Operators").

CA

number (Optional; PDF 1.4) The current stroking alpha constant, specifying the
constant shape or constant opacity value that shall be used for
stroking operations in the transparent imaging model (see 11.3.7.2,
"Source Shape and Opacity" and 11.6.4.4, "Constant Shape and
Opacity").

ca

number (Optional; PDF 1.4) Same as CA, but for nonstroking operations.

AIS

boolean (Optional; PDF 1.4) The alpha source flag (“alpha is shape”),
specifying whether the current soft mask and alpha constant shall be
interpreted as shape values (true) or opacity values (false).

TK

boolean (Optional; PDF 1.4) The text knockout flag, shall determine the
behaviour of overlapping glyphs within a text object in the transparent
imaging model (see 9.3.8, "Text Knockout").

EXAMPLE

130

The following shows two graphics state parameter dictionaries. In the first, automatic stroke adjustment is
turned on, and the dictionary includes a transfer function that inverts its value, f(x) = 1 - x. In the second,

overprint is turned off, and the dictionary includes a parabolic transfer function, f(x) = (2x - 1)2, with a
sample of 21 values. The domain of the transfer function, [0.0 1.0], is mapped to [0 20], and the range
of the sample values, [0 255], is mapped to the range of the transfer function, [0.0 1.0].

10 O obj % Page object
<< [Type [/Page
/Parent 50R
/Resources 200 R
/Contents 400 R
>>
endobj

20 0 obj % Resource dictionary for page
<< /ProcSet [/PDF [Text]
/Font << /[F1 250R >>
/ExtGState << /GS1 300R
/GS2 350R
>>
>>
endobj

30 O obj % First graphics state parameter dictionary
<< [Type /ExtGState
/SA true
/TR 310R
>>
endobj

o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

31 0 obj % First transfer function
<< [FunctionType 0
/Domain [0.0 1.0]
/Range [0.0 1.0]
/Size 2
/BitsPerSample 8
/Length 7
[Filter /ASCIlIHexDecode
>>

stream

01 00 >
endstream
endobj

35 0 obj % Second graphics state parameter dictionary
<< [Type /ExtGState
/OP false
/TR 36 0R
>>

endobj

36 0 obj % Second transfer function
<< /FunctionType O
/Domain [0.0 1.0]
/Range [0.0 1.0]
/Size 21
/BitsPerSample 8
/Length 63
[Filter /ASCIlIHexDecode
>>

stream

FF CE A3 7C 5B 3F 28 16 OA 02 00 02 OA 16 28 3F 5B 7C A3 CE FF >
endstream

endobj

8.5 Path Construction and Painting

8.5.1 General

Paths define shapes, trajectories, and regions of all sorts. They shall be used to draw lines, define the shapes
of filled areas, and specify boundaries for clipping other graphics. The graphics state shall include a current
clipping path that shall define the clipping boundary for the current page. At the beginning of each page, the
clipping path shall be initialized to include the entire page.

A path shall be composed of straight and curved line segments, which may connect to one another or may be
disconnected. A pair of segments shall be said to connect only if they are defined consecutively, with the
second segment starting where the first one ends. Thus, the order in which the segments of a path are defined
shall be significant. Nonconsecutive segments that meet or intersect fortuitously shall not be considered to
connect.

NOTE A path is made up of one or more disconnected subpaths, each comprising a sequence of connected
segments. The topology of the path is unrestricted: it may be concave or convex, may contain multiple
subpaths representing disjoint areas, and may intersect itself in arbitrary ways.

The h operator explicitly shall connect the end of a subpath back to its starting point; such a subpath is said to
be closed. A subpath that has not been explicitly closed is said to be open.

o Adobe Systems Incorporated 2008 — All rights reserved 131

PDF 32000-1:2008

As discussed in 8.2, "Graphics Objects", a path object is defined by a sequence of operators to construct the
path, followed by one or more operators to paint the path or to use it as a clipping boundary. PDF path
operators fall into three categories:

» Path construction operators (8.5.2, "Path Construction Operators") define the geometry of a path. A path is
constructed by sequentially applying one or more of these operators.

« Path-painting operators (8.5.3, "Path-Painting Operators") end a path object, usually causing the object to
be painted on the current page in any of a variety of ways.

e Clipping path operators (8.5.4, "Clipping Path Operators"”), invoked immediately before a path-painting
operator, cause the path object also to be used for clipping of subsequent graphics objects.

8.5.2 Path Construction Operators

8.5.2.1 General

A page description shall begin with an empty path and shall build up its definition by invoking one or more path
construction operators to add segments to it. The path construction operators may be invoked in any sequence,
but the first one invoked shall be m or re to begin a new subpath. The path definition may conclude with the
application of a path-painting operator such as S, f, or b (see 8.5.3, "Path-Painting Operators"); this operator
may optionally be preceded by one of the clipping path operators W or W* (8.5.4, "Clipping Path Operators").

NOTE Note that the path construction operators do not place any marks on the page; only the painting operators do
that. A path definition is not complete until a path-painting operator has been applied to it.

The path currently under construction is called the current path. In PDF (unlike PostScript), the current path is
not part of the graphics state and is not saved and restored along with the other graphics state parameters.
PDF paths shall be strictly internal objects with no explicit representation. After the current path has been
painted, it shall become no longer defined; there is then no current path until a new one is begun with the m or
re operator.

The trailing endpoint of the segment most recently added to the current path is referred to as the current point.
If the current path is empty, the current point shall be undefined. Most operators that add a segment to the
current path start at the current point; if the current point is undefined, an error shall be generated.

Table 59 shows the path construction operators. All operands shall be numbers denoting coordinates in user
space.

Table 59 — Path Construction Operators

Operands Operator Description

Xy m Begin a new subpath by moving the current point to
coordinates (x, y), omitting any connecting line segment. If
the previous path construction operator in the current path
was also m, the new m overrides it; no vestige of the
previous m operation remains in the path.

Xy | (lowercase L) Append a straight line segment from the current point to the
point (X, y). The new current point shall be (x, y).

X1 Y1 X5 Yy X3 VY3 c Append a cubic Bézier curve tq the current_ path. The curve
shall extend from the current point to the point (X3, y3), using

(X1, yq) and (x,, y,) as the Bézier control points (see 8.5.2.2,
"Cubic Bézier Curves"). The new current point shall be
(X3, ¥3)-

132 o Adobe Systems Incorporated 2008 — All rights reserved

PDF 32000-1:2008

Table 59 — Path Construction Operators (continued)

Operands Operator Description

Xo Yo X3 Y3 Y Append a cubic Bézier curve to the current path. The curve
shall extend from the current point to the point (x5, y3), using

the current point and (x,, y,) as the Bézier control points (see
8.5.2.2, "Cubic Bézier Curves"). The new current point shall
be (X3, Y3)-

Xy Yy X3 Va3 y Append a cubic Bézier curve to the current path. The curve
shall extend from the current point to the point (x5, y3), using

(X1, ¥1) and (x5, y3) as the Bézier control points (see 8.5.2.2,
"Cubic Bézier Curves"). The new current point shall be
(X3, Y3)-

— h Close the current subpath by appending a straight line
segment from the current point to the starting point of the
subpath. If the current subpath is already closed, h shall do
nothing.

This operator terminates the current subpath. Appending
another segment to the current path shall begin a new
subpath, even if the new segment begins at the endpoint
reached by the h operation.

X y width height re Append a rectangle to the current path as a complete
subpath, with lower-left corner (x,y) and dimensions width
and height in user space. The operation

X y width height re
is equivalent to

Xy m

(x +width) y |

(x + width) (y + height) |
x (y + height) |

h

8.5.2.2 Cubic Bézier Curves

Curved path segments shall be specified as cubic Bézier curves. Such curves shall be defined by four points:
the two endpoints (the current point P, and the final point P5) and two control points P, and P,. Given the

coordinates of the four points, the curve shall be generated by varying the parameter t from 0.0 to 1.0 in the
following equation:

R(M) = (1-1)°Py+3t(1-1)°P, +3t°(1-1)P, + P,

When t = 0.0, the value of the function R(t) coincides with the current point P; when t = 1.0, R(t) coincides with
the final point P5. Intermediate values of t generate intermediate points along the curve. The curve does not, in
general, pass through the two control points P, and P,.

NOTE 1 Cubic Bézier curves have two useful properties:
The curve can be very quickly split into smaller pieces for rapid rendering.
The curve is contained within the convex hull of the four points defining the curve, most easily visualized as the
polygon obtained by stretching a rubber band around the outside of the four points. This property allows rapid

testing of whether the curve lies completely outside the visible region, and hence does not have to be
rendered.

NOTE 2 The Bibliography lists several books that describe cubic Bézier curves in more depth.

o Adobe Systems Incorporated 2008 — All rights reserved 133

PDF 32000-1:2008

The most general PDF operator for