

	Acrobat API Reference	All Layers | All Objects | Index | Samples | Frames No Frames 	
	PDWord	Typedefs | Callbacks | Methods
	

	Layer	PD_Layer
	Object	PDWord

A PDWord object represents a word in a PDF file. Each word contains a sequence of characters in one or more styles (see PDStyle).

All characters in a word are not necessarily physically adjacent. For example, words can be hyphenated across line breaks
on a page.
Each character in a word has a character type. Character types include: control code, lowercase letter,
uppercase letter, digit, punctuation mark, hyphen, soft hyphen, ligature, white space, comma, period, unmapped glyph,
end-of-phrase glyph, wildcard, word break, and glyphs that cannot be represented in the destination font encoding.
The PDWordGetCharacterTypes() method can get the character type for each character in a word. The PDWordGetAttr() method
returns a mask containing information on the types of characters in a word. The mask is the logical OR
of several flags, including the following:
	One or more characters in the word cannot be represented in the output encoding.
	One or more characters in the word are punctuation marks.
	The first character in the word is a punctuation mark (this bit is on in addition to the punctuation bit).
	The last character in the word is a punctuation mark (this bit is on in addition to the punctuation bit).
	
The word contains a ligature (a special typographic symbol consisting of two or more characters such as the
English fi ligature used to replace the two-character sequence, f
followed by i). Ligatures are used to improve the appearance of a word.

	One or more characters in the word are digits.
	There is a hyphen in the word.
	There is a soft hyphen in the word.

A word's location is specified by the offset of its first character from the beginning of the page
(known as the character offset). The characters are enumerated in the order in which they appear in page's
content stream in the PDF file (which is not necessarily the order in which the characters are read when displayed or printed).
A word also has a character delta, which is the difference between the number of characters
representing the word in the PDF file and the number of characters in the word. The character delta is non-zero,
for example, when a word contains a ligature.

Typedef Summary

	 	Typedef
	 	PDWord
A word in a PDF file. Each word contains a sequence of characters in one or more styles (see PDStyle).

Callback Summary

	 	Callback
	 	PDWordProc
A callback for PDWordFinderEnumWords. It is called once for each word.

Method Summary

	 	Method
	 	
PDTextSelect PDWordCreateTextSelect(PDPage page, PDWord* wList, ASUns32 wListLen)

Creates a text selection object for a given page that includes all words in a word list, as returned from a PDWordFinder method. The text selection can then be set as the current selection using AVDocSetSelection().

	 	
ASBool PDWordFilterString(ASUns16* infoArray, char* cNewWord, char* cOldWord)

Removes leading and trailing spaces and leading and trailing punctuation (including soft hyphens) from the specified word. It does not remove wildcard characters (
'*'
 and
'?'
) or any punctuation surrounded by alphanumeric characters within the word.

	 	
ASBool PDWordFilterWord(PDWord word, char* buffer, ASInt16 bufferLen, ASInt16* newLen)

Removes leading and trailing spaces and leading and trailing punctuation (including soft hyphens) from the specified word. It does not remove wildcard characters ('*' and '?') or any punctuation surrounded by alphanumeric characters within the word. It also converts ligatures to their constituent characters. The determination of which characters to remove is made by examining the flags in the outEncInfo array passed to PDDocCreateWordFinder(). As a result, this method is most useful after you have been called with words obtained by calling PDWordFinderGetNthWord(), in the callback for PDWordFinderEnumWords(), and words in the pXYSortTable returned by PDWordFinderAcquireWordList(). See the description of PDWordFilterString() for further information, and for a description of how the two methods differ.

	 	
void PDWordGetASText(PDWord word, ASUns32 filter, ASText str)

Copies the text from a word into an ASText object. It automatically performs the necessary encoding conversions from the specified word (either in Unicode or Host Encoding) to the ASText object.

	 	
ASUns16 PDWordGetAttr(PDWord word)

Gets a bit field containing information on the types of characters in a word. Use PDWordGetCharacterTypes() if you wish to check each character's type individually.

	 	
ASUns16 PDWordGetAttrEx(PDWord word, ASUns32 groupID)

This is a version 6.0 extension of PDWordGetAttr() that can be used only with a word finder created with algorithm version WF_VERSION_3 or higher. It can get an additional 16-bit flag group defined in Acrobat 6.

	 	
ASUns32 PDWordGetByteIdxFromHiliteChar(PDWord word, ASUns32 charIdx)

Returns the byte offset within the specified word of the highlightable character at the specified character offset. The first character of a word is at byte offset 0. This method can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.

	 	
void PDWordGetCharacterTypes(PDWord word, ASUns16* cArr, ASInt16 size)

Gets the character type for each character in a word.

	 	
ASInt8 PDWordGetCharDelta(PDWord word)

Gets the difference between the word length (the number of printed characters in the word) and the PDF word length (the number of character codes in the word). For instance, if the PDF word is fi (ligature) sh the mapped word will be "fish". The ligature occupies only one character code, so in this case the character delta will be 3-4 = -1.

	 	
void PDWordGetCharEncFlags(PDWord word, ASUns32* fList, ASUns32 size)

Gets the WordFinder Character Encoding Flags for each character in a word, which specify how reliably the word finder identified the character encoding.

	 	
ASUns16 PDWordGetCharOffset(PDWord word)

Returns a word's character offset from the beginning of its page. This information, together with the character delta obtained from PDWordGetCharDelta(), can be used to highlight a range of words on a page, using PDTextSelectCreatePageHilite().

	 	
ASUns32 PDWordGetCharOffsetEx(PDWord word, ASUns32 byteIdx, ASUns32* bytesConsumed, ASUns32* offsetLen)

This is a version 6.0 extension of PDWordGetCharOffset() that can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.

	 	
ASBool PDWordGetCharQuad(PDWord word, ASUns32 byteIdx, ASFixedQuad* quad)

Gets the quadrilateral bounding of the character at a given index position in the word. If the specified character is constructed with multiple bytes, only the first byte returns a valid quad. Otherwise, this method returns false.

	 	
ASUns8 PDWordGetLength(PDWord word)

Gets the number of bytes in a word. This method also works on non-Roman systems.

	 	
PDStyle PDWordGetNthCharStyle(PDWordFinder wObj, PDWord word, ASInt32 dex)

Returns a PDStyle object for the nth style in a word.

	 	
ASBool PDWordGetNthQuad(PDWord word, ASInt16 nTh, ASFixedQuad* quad)

Gets the specified word's nth quad, specified in user space coordinates. See PDWordGetNumQuads() for a description of a quad.

	 	
ASUns32 PDWordGetNumHiliteChar(PDWord word)

Gets the number of highlightable characters in a word. A highlightable character is the minimum text unit that Acrobat can select and highlight. This method can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.

	 	
ASInt16 PDWordGetNumQuads(PDWord word)

Gets the number of quads in a word. A quad is a quadrilateral bounding a contiguous piece of a word. Every word has at least one quad. A word has more than one quad, for example, if it is hyphenated and split across multiple lines or if the word is set on a curve rather than on a straight line.

	 	
void PDWordGetString(PDWord word, char* str, ASInt32 len)

This method gets a word's text. The string to return includes any word break characters (such as space characters) that follow the word, but not any that precede the word. The characters that are treated as word breaks are defined in the outEncInfo parameter of PDDocCreateWordFinder() method. Use PDWordFilterString() to subsequently remove the word break characters.

	 	
ASInt16 PDWordGetStyleTransition(PDWord word, ASInt16* transTbl, ASInt16 size)

Gets the locations of style transitions in a word. Every word has at least one style transition, at character position zero in the word.

	 	
ASBool PDWordIsCurrentlyVisible(PDWord word, ASInt32 pageNum, PDOCContext ctx)

Tests whether a word is visible in a given optional-content context on a given page.

	 	
ASBool PDWordIsRotated(PDWord word)

Tests whether a word is rotated.

	 	
ASBool PDWordMakeVisible(PDWord word, ASInt32 pageNum, PDOCContext ctx)

Makes a word visible in a given optional-content context on a given page.

	 	
ASUns16 PDWordSplitString(ASUns16* infoArray, char* cNewWord, char* cOldWord, ASUns16 nMaxLen)

Splits the specified string into words by substituting spaces for word separator characters. The list of characters considered to be word separators can be specified, or a default list can be used.

Typedefs Detail

	PDWord	

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

typedef struct _t_PDWord* PDWord;

A word in a PDF file. Each word contains a sequence of characters in one or more styles (see PDStyle).

See Also

PDWordFinderGetNthWord
PDWordFinderEnumWords
PDWordFinderEnumWords

Examples

Peddler::TEWordProc(PDWordFinder wObj, PDWord wInfo, Int32 pageNum, void * clientData)

 if (wInfo == (PDWord) NULL) {

 static ACCB1 ASBool ACCB2 TEWordProc(PDWordFinder wObj, PDWord wInfo, Int32 pageNum, void *clientData);

more...

	File: PDExpT.h
	Line: 3305

Callbacks Detail

	PDWordProc	

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

ASBool (*PDWordProc)(PDWordFinder wObj, PDWord wInfo, ASInt32 pgNum, void *clientData)

A callback for PDWordFinderEnumWords. It is called once for each word.

See Also

PDWordFinderEnumWords

Examples

 PDWordFinderEnumWords(wordFinder, PDAllPages,ASCallbackCreateProto(PDWordProc,&(this->TEWordProc)),(void *)this);

 PDWordFinderEnumWords(pdWordFinder, i, ASCallbackCreateProto(PDWordProc, &WordEnumProc), &outFile);

	File: PDExpT.h
	Line: 3327

Method Detail

	PDWordCreateTextSelect	()	

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	PDTextSelect PDWordCreateTextSelect(PDPage page, PDWord* wList, ASUns32 wListLen)

Creates a text selection object for a given page that includes all words in a word list, as returned from a PDWordFinder method. The text selection can then be set as the current selection using AVDocSetSelection().

 Parameters
		page — 	The page on which to select the words.

	
		wList — 	The word list to be selected.

	
		wListLen — 	The number of words in the word list.

Returns
		The newly created text selection.

See Also

PDDocCreateTextSelect
PDTextSelectDestroy
AVDocSetSelection
PDTextSelectEnumQuads
PDTextSelectEnumText

Since

PI_PDMODEL_VERSION >= 0x00060000

Note

For consistent text selection behavior, avoid using other PDTextSelect creation methods which depend on the word finder versions and word offsets. These include PDTextSelectCreatePageHiliteEx(), PDTextSelectCreateRanges(), PDTextSelectCreateRangesEx(), PDTextSelectCreateWordHilite(), and PDTextSelectCreateWordHiliteEx().

	File: PDProcs.h
	Line: 8512

	PDWordFilterString	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordFilterString(ASUns16* infoArray, char* cNewWord, char* cOldWord)

Removes leading and trailing spaces and leading and trailing punctuation (including soft hyphens) from the specified word. It does not remove wildcard characters (
'*'
 and
'?'
) or any punctuation surrounded by alphanumeric characters within the word.
The determination of which characters are alphanumeric, wildcard, punctuation, and so forth, is made by the values in infoArray.
Although this method seems very similar to PDWordFilterWord(), the two methods treat letters and digits slightly differently. PDWordFilterWord() uses the encoding info array but also does a straight character code test for any characters that have not been mapped to anything. It does this to catch letters and digits from non-standard character sets, and is necessary to avoid removing words with non-standard character sets.

PDWordFilterString(), on the other hand, was designed for known character sets such as WinAnsi and Mac Roman.
For non-Roman character set viewers, this method currently supports only SHIFT-JIS encoding on a Japanese system.

 Parameters
		infoArray — 	An array specifying the type of each character in the font. Each entry in this table must be one of the Character Type Codes. If infoArray is set to NULL, a default table is used. For non-UNIX Roman systems, it is WinAnsiEncoding on Windows and MacRomanEncoding on Mac OS. On UNIX (except HP-UX) Roman systems, it is ISO8859-1 (ISO Latin-1); for HP-UX, it is HP-ROMAN8. See Appendix D in the PDF Reference for descriptions of MacRomanEncoding and WinAnsiEncoding.

	
		cNewWord — 	(Filled by the method) The filtered word.

	
		cOldWord — 	The unfiltered word. This value must be passed to the method.

Returns
		true if the string required filtering, false if the filtered string is the same as the unfiltered string.

See Also

PDWordFilterWord

Since

PI_PDMODEL_VERSION >= 0x00020000

Note

In Acrobat 6.0, the method PDWordFinderEnumWordsStr() is preferred to this method, which remains for backward compatability.

	File: PDProcs.h
	Line: 5044

	PDWordFilterWord	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordFilterWord(PDWord word, char* buffer, ASInt16 bufferLen, ASInt16* newLen)

Removes leading and trailing spaces and leading and trailing punctuation (including soft hyphens) from the specified word. It does not remove wildcard characters ('*' and '?') or any punctuation surrounded by alphanumeric characters within the word. It also converts ligatures to their constituent characters. The determination of which characters to remove is made by examining the flags in the outEncInfo array passed to PDDocCreateWordFinder(). As a result, this method is most useful after you have been called with words obtained by calling PDWordFinderGetNthWord(), in the callback for PDWordFinderEnumWords(), and words in the pXYSortTable returned by PDWordFinderAcquireWordList(). See the description of PDWordFilterString() for further information, and for a description of how the two methods differ.
The Acrobat Catalog program uses this method to filter words before indexing them.
This method works with non-Roman systems.

 Parameters
		word — 	The PDWord to filter.

	
		buffer — 	(Filled by the method) The filtered string.

	
		bufferLen — 	The maximum number of characters that buffer can hold.

	
		newLen — 	(Filled by the method) The number of characters actually written into buffer.

Returns
		true if the word required filtering, false if the filtered string is the same as the unfiltered string.

See Also

PDWordFilterString

Since

PI_PDMODEL_VERSION >= 0x00020000

Note

In Acrobat 6.0 and later, the method PDWordFinderEnumWords() is preferred to this method, which remains for backward compatability.

Examples

 PDWordFilterWord(wInfo, str, 256, &retSize);

	File: PDProcs.h
	Line: 5080

	PDWordGetASText	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	void PDWordGetASText(PDWord word, ASUns32 filter, ASText str)

Copies the text from a word into an ASText object. It automatically performs the necessary encoding conversions from the specified word (either in Unicode or Host Encoding) to the ASText object.

 Parameters
		word — 	The word whose text becomes the new ASText.

	
		filter — 	Character types to be dropped from the output string. For example, the following returns text without soft hyphens and accent marks:

PDWordGetASText(word, W_SOFT_HYPHEN + W_ACCENT, mystr);

	
		str — 	An existing ASText object whose content will be replaced by the new text.

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 8429

	PDWordGetAttr	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns16 PDWordGetAttr(PDWord word)

Gets a bit field containing information on the types of characters in a word. Use PDWordGetCharacterTypes() if you wish to check each character's type individually.

 Parameters
		word — 	IN/OUT The word whose character types are obtained.

Returns
		A bit field containing information on the types of characters in word. The value is a logical OR of the Word Attributes.

See Also

PDWordGetCharacterTypes
PDWordGetStyleTransition
PDWordGetNthCharStyle

Since

PI_PDMODEL_VERSION >= 0x00020000

Note

PDWordGetAttr() may return an attribute value greater than the maximum of all of the public attributes since there can be private attributes added on. It is recommended to AND the result with the attribute you are interested in.

	File: PDProcs.h
	Line: 4836

	PDWordGetAttrEx	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns16 PDWordGetAttrEx(PDWord word, ASUns32 groupID)

This is a version 6.0 extension of PDWordGetAttr() that can be used only with a word finder created with algorithm version WF_VERSION_3 or higher. It can get an additional 16-bit flag group defined in Acrobat 6.
It gets a bit field containing information on the types of characters in a word. Use PDWordGetCharacterTypes() if you wish to check each character's type individually.

 Parameters
		word — 	The word whose character types are obtained.

	
		groupID — 	The group number of the Word Attributes flags:

	

0, the default, is the first 16-bit group, and is the same as PDWordGetAttr().

	

1 gets the second group defined in Acrobat 6.

Returns
		A bit field containing information on the types of characters in word. The value is a logical OR of the Word Attributes.

See Also

PDWordGetCharacterTypes
PDWordGetStyleTransition
PDWordGetNthCharStyle

Since

PI_PDMODEL_VERSION >= 0x00060000

Note

PDWordGetAttr() may return an attribute value greater than the maximum of all of the public attributes, since there can be private attributes added on. It is recommended that you AND the result with the attribute you are interested in.

	File: PDProcs.h
	Line: 8487

	PDWordGetByteIdxFromHiliteChar	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns32 PDWordGetByteIdxFromHiliteChar(PDWord word, ASUns32 charIdx)

Returns the byte offset within the specified word of the highlightable character at the specified character offset. The first character of a word is at byte offset 0. This method can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.
The returned byte offset can be passed to PDWordGetCharOffsetEx() and PDWordGetCharQuad() to get additional information. Use PDWordGetNumHiliteChar() to get the number of highlightable characters in a word.

 Parameters
		word — 	The word containing the character.

	
		charIdx — 	The character index within the word.

Returns
		The byte offset of the specified character within the word, or 0 if the character index is out of range.

See Also

PDWordGetCharOffsetEx
PDWordGetCharQuad
PDWordGetNumHiliteChar

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 8412

	PDWordGetCharacterTypes	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	void PDWordGetCharacterTypes(PDWord word, ASUns16* cArr, ASInt16 size)

Gets the character type for each character in a word.

 Parameters
		word — 	The word whose character types are obtained.

	
		cArr — 	(Filled by the method) An array of character types. This array contains one element for each character in the word. Use PDWordGetLength() to determine the number of elements that must be in the array. Each element is the logical OR of one or more of the Character Type Codes. For non-Roman character set viewers, meaningful values are returned only for Roman characters. For non-Roman characters, it returns 0, which is the same as W_CNTL. If the character is 2 bytes, both bytes indicate the same character type.

	
		size — 	The number of elements in cArr.

See Also

PDWordGetAttr
PDWordGetLength

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 4858

	PDWordGetCharDelta	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASInt8 PDWordGetCharDelta(PDWord word)

Gets the difference between the word length (the number of printed characters in the word) and the PDF word length (the number of character codes in the word). For instance, if the PDF word is fi (ligature) sh the mapped word will be "fish". The ligature occupies only one character code, so in this case the character delta will be 3-4 = -1.

 Parameters
		word — 	IN/OUT The word whose character delta is obtained.

Returns
		The character delta for word. Cast the return value to an ASInt8 before using.
If the PDWord's character set has no ligatures, such as on a non-Roman viewer supporting Japanese, returns 0.

See Also

PDWordGetLength
PDWordGetCharOffset

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 4897

	PDWordGetCharEncFlags	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	void PDWordGetCharEncFlags(PDWord word, ASUns32* fList, ASUns32 size)

Gets the WordFinder Character Encoding Flags for each character in a word, which specify how reliably the word finder identified the character encoding.
This method can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.

 Parameters
		word — 	The word whose character encoding flags are obtained.

	
		fList — 	(Filled by the method) An array of character encoding flags types. This array contains one element for each byte of text in the word. The byte length of the text can be determined with PDWordGetLength(). Each element is the logical OR of one or more of the character encoding flags.

	
		size — 	The maximum number of elements in the array fList.

See Also

PDWordGetAttrEx
PDWordGetLength

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 8454

	PDWordGetCharOffset	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns16 PDWordGetCharOffset(PDWord word)

Returns a word's character offset from the beginning of its page. This information, together with the character delta obtained from PDWordGetCharDelta(), can be used to highlight a range of words on a page, using PDTextSelectCreatePageHilite().

 Parameters
		word — 	IN/OUT The word whose character offset is obtained.

Returns
		The word's character offset. On multi-byte systems, it points to the first byte.

See Also

PDWordGetCharDelta
PDWordGetLength
PDTextSelectCreatePageHilite

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 4876

	PDWordGetCharOffsetEx	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns32 PDWordGetCharOffsetEx(PDWord word, ASUns32 byteIdx, ASUns32* bytesConsumed, ASUns32* offsetLen)

This is a version 6.0 extension of PDWordGetCharOffset() that can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.
It returns the character offset for a character identified by its index number, and the number of bytes (length) used for that character. The length is usually 1 for single-byte characters and 2 for double-byte characters. If multiple bytes are used to construct one character, only the first byte has valid character offset information and the other bytes have zero offset length with the same character offset of the first byte. If the returned offset length is zero, it means the specified byte in the word is a part (other than the first byte) of a multi-byte character.
The character offset is the character position calculated in bytes from the beginning of a page. Because of the encoding conversions and character replacements applied by the word finder, some characters may have different byte lengths from the original PDF content. The character offset itself can locate a character in the PDF content. However, without the offset length (that is the number of bytes in the PDF content), clients cannot tell whether two characters are next to each other in the PDF content. For example, suppose you want to create a Text Select object of two characters at character offset 1 and 3. You can create an object with two disconnected ranges of [Offset 1, The length 1] and [Offset 3, The length 1]. However, if you know that the offset length of both characters is 2, you can create a simpler object with a single range of [Offset 1, The length 4].

 Parameters
		word — 	The word whose character offset is obtained.

	
		byteIdx — 	The byte index within the word of the character whose offset is obtained. Valid values are 0 to PDWordGetLength(word)-1.

	
		bytesConsumed — 	(Filled by method) Returns the number of bytes in the word that are occupied by the specified character. It can be NULL if it is not needed. Use (byteIdx + *bytesConsumed) to get the byte index of the next character in the word.

	
		offsetLen — 	(Filled by the method) Returns the number of bytes occupied by the specified character in the original PDF content. This is 0 if the specified byte is not the starting byte of a character in the PDF content. It can be NULL if it is not needed.

Returns
		The word's character offset and the number of bytes occupied by the character.

See Also

PDWordGetCharOffset
PDWordGetCharDelta
PDWordGetLength
PDTextSelectCreatePageHilite

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 8340

	PDWordGetCharQuad	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordGetCharQuad(PDWord word, ASUns32 byteIdx, ASFixedQuad* quad)

Gets the quadrilateral bounding of the character at a given index position in the word. If the specified character is constructed with multiple bytes, only the first byte returns a valid quad. Otherwise, this method returns false.
This method can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.

 Parameters
		word — 	The word whose character offset is obtained.

	
		byteIdx — 	The byte index within the word of the character whose quad is obtained. Valid values are 0 to PDWordGetLength(word)-1.

	
		quad — 	(Filled by method) A pointer to an existing quad structure in which to return the character's quad specified in user-space coordinates.

Returns
		true if the provided byte index is the beginning byte of a character and a valid quad is returned, false otherwise.

See Also

PDWordGetCharOffsetEx
PDWordGetNthQuad
PDWordGetNumQuads

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 8366

	PDWordGetLength	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns8 PDWordGetLength(PDWord word)

Gets the number of bytes in a word. This method also works on non-Roman systems.

 Parameters
		word — 	IN/OUT The word object whose character count is obtained.

Returns
		The number of characters in word.

See Also

PDWordGetCharDelta
PDWordGetCharOffset

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 4786

	PDWordGetNthCharStyle	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	PDStyle PDWordGetNthCharStyle(PDWordFinder wObj, PDWord word, ASInt32 dex)

Returns a PDStyle object for the nth style in a word.

 Parameters
		wObj — 	IN/OUT A word finder object.

	
		word — 	IN/OUT The word whose nth style is obtained.

	
		dex — 	IN/OUT The index of the style to obtain. The first style in a word has an index of zero.

Returns
		The nth style in the word. It returns NULL if dex is greater than the number of styles in the word.

See Also

PDWordGetStyleTransition

Exceptions

genErrBadParm is raised if dex < 0.

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 4933

	PDWordGetNthQuad	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordGetNthQuad(PDWord word, ASInt16 nTh, ASFixedQuad* quad)

Gets the specified word's nth quad, specified in user space coordinates. See PDWordGetNumQuads() for a description of a quad.
The quad's height is the height of the font's bounding box, not the height of the tallest character used in the word. The font's bounding box is determined by the glyphs in the font that extend farthest above and below the baseline; it often extends somewhat above the top of 'A' and below the bottom of 'y'.
The quad's width is determined from the characters actually present in the word.
For example, the quads for the words "AWAY" and "away" have the same height, but generally do not have the same width unless the font is a mono-spaced font (a font in which all characters have the same width).
Despite the names of the fields in an ASFixedQuad (tl for top left, bl for bottom left, and so forth) the corners of quad do not necessarily have these positions.

 Parameters
		word — 	The word whose nth quad is obtained.

	
		nTh — 	The quad to obtain. A word's first quad has an index of zero.

	
		quad — 	(Filled by the method) A pointer to the word's nth quad, specified in user-space coordinates.

Returns
		true if the word has an nth quad, false otherwise.

See Also

PDWordGetNumQuads

Since

PI_PDMODEL_VERSION >= 0x00020000

Examples

 PDWordGetNthQuad(wInfo, i, &quad);

	File: PDProcs.h
	Line: 4983

	PDWordGetNumHiliteChar	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns32 PDWordGetNumHiliteChar(PDWord word)

Gets the number of highlightable characters in a word. A highlightable character is the minimum text unit that Acrobat can select and highlight. This method can be used only with a word finder created with algorithm version WF_VERSION_3 or higher.
Because of the encoding conversion, the characters in a word finder word list do not have a 1-to-1 correspondence to the characters displayed by Acrobat. For example, if the word is "fish" and the text operation in PDF content is "fi"(ligature) + 's' + 'h', this method returns the number of highlightable characters as 3, counting "fi" as one character. For the same word, the PDWordGetLength() method returns the byte-length as 4.

 Parameters
		word — 	The word whose highlightable character count is obtained.

Returns
		The number of highlightable characters in word.

See Also

PDWordGetLength

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 8389

	PDWordGetNumQuads	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASInt16 PDWordGetNumQuads(PDWord word)

Gets the number of quads in a word. A quad is a quadrilateral bounding a contiguous piece of a word. Every word has at least one quad. A word has more than one quad, for example, if it is hyphenated and split across multiple lines or if the word is set on a curve rather than on a straight line.

 Parameters
		word — 	IN/OUT The word whose quad count is obtained.

Returns
		The number of quads in word.

See Also

PDWordGetNthQuad

Since

PI_PDMODEL_VERSION >= 0x00020000

Examples

 int numQ = PDWordGetNumQuads(wInfo);

	File: PDProcs.h
	Line: 4948

	PDWordGetString	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	void PDWordGetString(PDWord word, char* str, ASInt32 len)

This method gets a word's text. The string to return includes any word break characters (such as space characters) that follow the word, but not any that precede the word. The characters that are treated as word breaks are defined in the outEncInfo parameter of PDDocCreateWordFinder() method. Use PDWordFilterString() to subsequently remove the word break characters.
This method produces a string in whatever encoding the PDWord uses, for both Roman and non-Roman systems.

 Parameters
		word — 	The word whose string is obtained.

	
		str — 	(Filled by the method) The string. The encoding of the string is the encoding used by the PDWordFinder that supplied the PDWord. For instance, if PDDocCreateWordFinderUCS() is used to create the word finder, PDWordGetString() returns only Unicode. There is no way to detect Unicode strings returned by PDWordGetString(), since there is no UCS header (FEFF) added to each string returned.

	
		len — 	The length of str in bytes. Up to len characters of word will be copied into str. If str is long enough, it will be NULL-terminated.

See Also

PDWordGetLength
PDWordGetCharDelta
PDWordSplitString

Exceptions

genErrBadParm is raised if either word or str is NULL.

Since

PI_PDMODEL_VERSION >= 0x00020000

Examples

 PDWordGetString(pdWord, str, sizeof(str));

	File: PDProcs.h
	Line: 4815

	PDWordGetStyleTransition	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASInt16 PDWordGetStyleTransition(PDWord word, ASInt16* transTbl, ASInt16 size)

Gets the locations of style transitions in a word. Every word has at least one style transition, at character position zero in the word.

 Parameters
		word — 	IN/OUT The word whose style transition list is obtained.

	
		transTbl — 	IN/OUT (Filled by the method) An array of style transitions. Each element is the character offset in word where the style changes. The offset specifies the first character in the word that has the new style. The first character in a word has an offset of zero.

	
		size — 	IN/OUT The number of entries that transTbl can hold. The word is searched only until this number of style transitions have been found.

Returns
		The number of style transition offsets copied to transTbl.

See Also

PDWordGetNthCharStyle

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 4918

	PDWordIsCurrentlyVisible	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordIsCurrentlyVisible(PDWord word, ASInt32 pageNum, PDOCContext ctx)

Tests whether a word is visible in a given optional-content context on a given page.

 Parameters
		word — 	The word to test.

	
		pageNum — 	The page number for which the word is tested.

	
		ctx — 	The context in which the word is tested, as returned by PDDocGetOCContext(pdDoc).

Returns
		true if the word is visible in the given context, false if it is hidden.

See Also

PDWordMakeVisible
PDWordFinderAcquireVisibleWordList
PDWordFinderEnumVisibleWords

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 10527

	PDWordIsRotated	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordIsRotated(PDWord word)

Tests whether a word is rotated.

 Parameters
		word — 	The word to test.

Returns
		true if the word is rotated, false otherwise.

See Also

PDWordGetNthQuad

Since

PI_PDMODEL_VERSION >= 0x00020000

Examples

 if(PDWordIsRotated(wInfo)){

	File: PDProcs.h
	Line: 4992

	PDWordMakeVisible	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASBool PDWordMakeVisible(PDWord word, ASInt32 pageNum, PDOCContext ctx)

Makes a word visible in a given optional-content context on a given page.

 Parameters
		word — 	The word to test.

	
		pageNum — 	The page number for which the word is to be made visible.

	
		ctx — 	The context in which the word is to be made visible, as returned by PDDocGetOCContext(pdDoc).

Returns
		true if the word can be made visible in the given context, false otherwise.

See Also

PDWordIsCurrentlyVisible
PDWordFinderAcquireVisibleWordList
PDWordFinderEnumVisibleWords

Since

PI_PDMODEL_VERSION >= 0x00060000

	File: PDProcs.h
	Line: 10544

	PDWordSplitString	()		

	Product availability: PDFL
	Platform availability: Macintosh, Windows, UNIX

Syntax

	ASUns16 PDWordSplitString(ASUns16* infoArray, char* cNewWord, char* cOldWord, ASUns16 nMaxLen)

Splits the specified string into words by substituting spaces for word separator characters. The list of characters considered to be word separators can be specified, or a default list can be used.
The characters ',' and '.' are context-sensitive word separators. If surrounded by digits (for example, 654,096.345), they are not considered word separators.
For non-Roman character set viewers, this method currently supports only SHIFT-JIS encoding on a Japanese system.

 Parameters
		infoArray — 	A character information table. It specifies each character's type; word separator characters must be marked as W_WORD_BREAK (see Character Type Codes). This table can be identical to the table to pass to PDDocCreateWordFinder(). If infoArray is NULL, a default table is used (see Glyph Names of Word Separators).

	
		cNewWord — 	(Filled by the method) The word that has been split. Word separator characters have been replaced with spaces.

	
		cOldWord — 	The word to split.

	
		nMaxLen — 	The number of characters that cNewWord can hold. Word splitting stops when cOldWord is completely processed or nMaxLen characters have been placed in cNewWord, whichever occurs first.

Returns
		The number of splits that occurred.

See Also

PDWordGetString

Exceptions

genErrGeneral is raised if infoArray is NULL, but host encoding cannot be obtained.

Since

PI_PDMODEL_VERSION >= 0x00020000

	File: PDProcs.h
	Line: 2227

 Copyright 2020 Adobe Systems Incorporated and its licensors. All rights reserved. Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. This product contains either BSAFE and/or TIPEM software by RSA Security, Inc. Portions utilize Microsoft Windows Media Technologies. Copyright © 2006 Microsoft Corporation. All Rights Reserved. Notices, terms and conditions pertaining to other third party software are located at http://www.adobe.com/go/thirdparty/ and incorporated herein by reference.
Tue Jun 23 2020, 12:30 AM GMT+05:30

