

	
	 	

 Acrobat and PDFL Developer Guides

 Acrobat-PDFL SDK Documentation

 	Acrobat and PDFL SDK Documentation	Master search and TOC
	Documentation
	Related specifications	PDF Reference
	Other formats
	12.x Legacy docs
	11.x and earlier documentation

	Acrobat-PDFL SDK: Overview	Acrobat-PDFL SDK: Overview	Developer support
	Licensing and distribution	Acrobat Reader
	Additional resources
	Technical and licensing limitations

	Samples provided with the Acrobat SDK
	Developing for Acrobat Reader	Acrobat vs. Reader
	Acrobat Reader plug-in guidelines
	Reader enabled plugins

	SDK technologies and options	JavaScript
	Plug-ins
	JavaScript vs. plugins: pros and cons
	Interapplication communication
	Viewing PDF documents from an external application
	Controlling Acrobat from an external application
	Adobe PDF Library

	Sandbox Broker Extensibility	Extending broker APIs at run time
	Components	Plugin (PI)
	Sandbox process
	Broker process (The broker process running with full rights)
	Plugin broker (The plugin broker process that extends the broker APIs at runtime)
	SandboxHFT (Public HFT provided by sandbox for broker extensibility)
	IPC channel between plugin and plugin broker, 1->6->4
	simple-ipc-lib and SandboxPISDK
	Building a plug-in
	Building a plugin’s broker process

	Handshake between plugin and plugin broker
	Implement CrossCalls (make calls from plug-in to plug-in’s broker process)	Changes required in the plugin (client)
	Changes required in the plugin’s broker (server)

	PDF File Creation	Creating PDF files from an authoring application	Acrobat Distiller
	Automated creation of PDF documents from Windows
	Automatic generation of advanced Acrobat features
	Attaching a native document to a PDF file
	Batch processing with Distiller
	Tagged PDF documents

	Creating PDF files using plug-ins or JavaScript	Empty PDF files
	PDF files from multiple files

	Creating PDF files without using Acrobat

	Working with PDF Features	Navigation in PDF documents	Bookmarks
	Thumbnails
	Links
	Actions for special effects

	PDF page manipulation	Page content
	Document logical structure
	Other ways of modifying PDF documents

	Watermarks
	Spell-checking
	Multimedia
	Printing PDF files
	Embedded fonts

	User Interface Modifications	Menu items and menus	Menu items
	Menus

	Toolbars	Items on a toolbar
	Toolbar creation

	Customization of Acrobat Help	About dialog box and splash screen
	Plug-in help files

	Annotations and Online Collaboration	About annotations	Annotations and JavaScript
	Annotations with plug-ins or IAC

	New annotation types

	XML and the Acrobat SDK	Adobe XML architecture	XML forms model
	XML templates
	Extensible Metadata Platform

	SOAP and web services
	Conversion of PDF documents to XML format
	XML-based information

	Forms and the Acrobat SDK	Workflows for forms
	About XML forms
	About Acrobat forms	Forms API
	OLE automation

	Metadata, Accessibility, and PDF Layers	Metadata	Extensible Metadata Platform (XMP)
	Adobe XMP Toolkit

	Accessibility
	PDF layers	Creation of layered PDF files
	What you can do with layers

	Searching and Indexing	Search plug-in
	Indexes and the Catalog plug-in

	Frequently Asked Questions	Forms	What are the requirements for using Acrobat forms?
	What is the FDF Toolkit?

	PDF documents	What ActiveX solutions are available?
	Visual Basic .NET and Visual C# .NET
	What API methods are available to modify PDF documents?
	Can I modify PDFs without a C programming background?
	How can I extract text?
	How can I display a PDF in an external application window?
	Using Acrobat to view PDFs in your own application
	Are multibyte font PDF documents supported by the Acrobat SDK?
	How are security and encryption provided in PDFs?

	Full-text search	What tools are available with Acrobat for full-text search?
	What tools are available for extracting and highlighting text?
	How do I communicate with the Acrobat Search plug-in?
	How do I create custom DocInfo fields for searching?

	How do I use the Windows command line?
	How can I customize the Acrobat installer?

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Plugin Development	Acrobat-PDFL SDK: Developing Plugins	About plugins
	About the Acrobat core API	Acrobat Viewer layer
	Portable Document layer
	Acrobat Support layer
	Cos layer
	Platform-specific methods

	Acrobat core API objects	File object interrelationships
	Document object interrelationships

	Acrobat core API methods
	Data types	Scalar types
	Simple types
	Complex types
	Opaque types
	Cos types

	About PDF Library and plugin applications	Manipulating Acrobat and Adobe Reader
	Displaying a PDF document in an external window
	Indexed searching
	Modifying file access
	Creating new annotation types
	Dynamically adding text to PDF documents

	Understanding your target application	Rights-enabled PDF documents
	Adobe Reader plugins

	Registering plugins for use by the plugin finder	PDF dictionary extensions

	Understanding Plugins	Plugin loading and initialization	Handshaking
	Exporting HFTs
	Importing HFTs and registering for notifications
	Initialization
	Unloading
	Summarizing a plugin’s life cycle

	Using callback functions
	Notifications
	Handling events	Mouse clicks
	Adjust cursor
	Key presses

	Using plugin prefixes	Obtaining a developer PDF name prefix
	Using a developer prefix

	Modifying the Acrobat or Adobe Reader user interface	Adding or removing menus and menu items
	Modifying toolbars
	Controlling the About box and splash screen
	Creating help files
	User interface guidelines

	Acquiring and releasing objects
	Debugging plugins
	Page view layers
	Minimizing screen redrawing
	Storing private data in PDF files
	Exporting data from PDF document objects

	Creating Plugin and PDF Library Applications	Working with platform-specific techniques	About platform-dependent data
	Portability techniques
	Windows techniques
	Mac OS techniques

	Creating a sample plugin	Including Acrobat SDK library files
	Adding the PIMain source file
	Adding application logic
	Compiling and building your plugin

	Creating a sample PDF Library application	Contents of the PDF Library SDK
	Developing applications with the Adobe PDF Library
	Initialization and termination
	Multithreading

	Upgrading existing plugins	Detecting supported APIs

	Migrating PDFL apps to Xcode

	Inserting Text into PDF Documents	Creating a new PDF document
	Creating a new page
	Creating a container
	Acquiring fonts
	Creating a PDEGraphicState object
	Creating an ASFixedMatrix object
	Inserting text
	Saving the PDF document
	Examining a PDFL app source file

	Working with Documents and Files	Opening PDF documents
	Opening a PDF in an external window	Creating a Window
	Defining the parameters for an external window
	Creating a handler for an external window
	Displaying an open dialog box
	Displaying a PDF in a window

	Determining the PDF version	PDF version
	PDF version extensions
	Setting the extension level of a document
	Getting the extension level of a document

	Bridging core API layers	Creating a PDDoc object
	Creating a PDDoc object for an open PDF
	Accessing non-PDF files

	Printing documents
	Working with the PDF/X format

	Creating Menus and Menu Commands	About menus	About AVmenubar typedefs
	About AVMenu typedefs
	About AVMenuItem typedefs

	Adding menu commands to menus	Adding a menu command to an existing menu
	Adding a menu command to a new menu

	Creating menu callback functions
	Determining if a menu item can be executed

	Creating Toolbars and Buttons	About toolbars	About AVToolBar typedefs
	About AVToolButton typedefs

	Retrieving toolbars
	Creating toolbar buttons	Setting help text for a button
	Setting label text
	Creating a sub-menu for a button

	Retrieving existing toolbar buttons
	Attaching a button to a toolbar
	Exposing a button in a web browser
	Removing a button from a toolbar
	Creating toolbar button callback functions

	Creating Annotations	Working with text annotations	Creating text annotations
	Retrieving existing annotations
	Modifying text annotations

	Working with redaction annotations	Creating a redaction annotation
	Modifying an existing redaction annotation
	Applying redaction annotations (removing redacted content)

	Working with Bookmarks	About bookmarks
	Creating bookmarks	Defining bookmark actions
	Removing bookmark actions
	Opening and closing bookmarks

	Retrieving bookmarks	Retrieving the root bookmark
	Retrieving a specific bookmark
	Retrieving all bookmarks

	Deleting bookmarks

	Working with Page Views and Contents	About page coordinates
	About page views
	Displaying page views
	Modifying page contents	Creating a PDEContent object
	Accessing page contents
	Determining page element types
	Modifying text elements

	Working with Words	About searching for words	About PDWord typedefs
	About PDWordFinder typedefs

	Creating a PDWordFinder object
	Extracting and displaying words
	Highlighting words

	Creating Handlers	About handlers
	Action handlers
	Annotation handlers
	AVCommand handlers	Creating an AVCommand handler
	Invoking AVCommands
	Configuring AVCommands
	Running commands
	Exposing AVCommands to the batch framework

	File format conversion handlers
	File specification handlers
	Selection servers
	Tool callbacks
	Window handlers
	File systems
	Progress monitors
	Transition handlers
	Adding message handling

	Registering for Event Notifications	Registering event notifications
	Unregistering event notifications

	Working with Document Security	About document security
	About security handlers	Adding a security handler
	Opening a secured file
	Saving a secured file

	Setting security for a document	Saving a file with an encryption dictionary
	Opening an encrypted file

	Working with Unicode Paths	About Unicode paths
	Creating Unicode file path application logic
	Retrieving Unicode path values	Creating an ASFileSys object
	Creating an ASFileSys object that supports Unicode paths

	Working with Host Function Tables	About host function tables
	Exporting host function tables	Creating HFT methods
	Creating HFT method definitions
	Creating HFT callback functions
	Creating new Host Function Tables
	Examining HFT header and source files

	Importing an existing HFT
	Invoking HFT methods
	Replacing HFT methods
	Migrating non-HFT PDF Library applications to HFT applications

	Working with Cos Objects	About Cos objects	About direct and indirect objects
	About Cos object types

	Working with Cos strings	Creating Cos strings
	Retrieving the string value

	Working with Cos arrays	Creating Cos arrays
	Retrieving Cos array values

	Working with Cos dictionaries	Creating Cos dictionaries
	Retrieving values from a Cos dictionary
	Querying a Cos dictionary for a key

	Working with Cos names	Creating Cos names
	Retrieving the value of a name object

	Working with Cos streams	Creating Cos streams
	Populating a PDF with a content stream

	Working with 3D Annotations	Creating 3D annotations
	Adding 3D data to an annotation	Creating the 3D annotation dictionary entries
	Specifying the 3D stream
	Setting the default view
	Setting the annotation appearance
	Setting the activation dictionary

	Parsing and Creating PRC Files	Working with the Acrobat 3D API	Versions
	Compatibility with different PRC format versions
	Compatibility between the Acrobat 3D Library and the Acrobat 3D API
	Requirements
	Data types, naming conventions, and character encoding
	Structured and recursive nature of PRC parsing

	Implementing external linking in your plugin	Implementing external linking

	Parsing a PRC file	Handling errors
	Copying the embedded PRC file to a separate file
	Initializing the Acrobat 3D API
	Parsing structure PRC entities
	Parsing tessellation PRC entities
	Parsing topology PRC entities
	Parsing PRC entities that specify graphics
	Parsing attributes that appear in an entity base
	Terminating the interface with the Acrobat 3D API

	Creating a PRC file that uses boundary representation	Error handling
	Creating a model file entity and exporting it to a physical file
	Creating structure PRC entities
	Creating representation item PRC entities
	Creating topology PRC entities
	Creating geometry PRC entities
	Defining root-level attributes for a PRC entity
	Creating a 3D annotation that references the PRC file

	Creating a tessellation entity for representing faceted objects	Create the tessellation base data
	Create the tessellation facet data

	Handling Exceptions	Creating exception handlers
	Returning a value from an exception handler
	Raising exceptions
	Exception handling scenarios	Using goto statements
	Using nested exception handlers
	Using register variables

	Working with Acrobat Extended APIs	Search extended API
	Catalog extended API
	PDF Consultant and Accessibility Checker extended API	Acrobat agents
	Reclassifying and revisiting
	Agent architecture
	How the consultant works
	Important issues for consultant development
	Importing the consultant HFTs into a plugin
	Creating and destroying consultants
	Registering agents with consultants
	Starting the consultant
	Consultant object type identification
	Creating an agent class
	Creating agent constructors
	Recognizing objects of interest
	Post processing stage

	Digital signature extended API	The PubSec layer
	Digital signature components
	Digital signature scenarios
	Initializing the digital signature plugin
	Understanding the process

	Forms extended API
	Weblink extended API	Weblink services
	Writing a custom driver

	Spelling extended API
	AcroColor extended API	Color conversion operations

	PDF Optimizer API

	Creating an Adobe Reader Plugin	Configuring preprocessor definitions
	Creating the public and private key pairs
	Enabling the plugin for Adobe Reader	Plugin to be Notarized on MacOS

	Troubleshooting an Adobe Reader plugin	Plugin appears to be ignored by Adobe Reader
	Adobe Reader error messages

	Reader Plugins	Reader enablement
	APIs available for Adobe Reader

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Interapplication Communication	Developing for Interapplication Communication	About the API object layers	Object reference syntax
	Objects in the Acrobat application layer
	Objects in the portable document layer

	Plugins for extending the IAC interfaces
	Developing for Acrobat Reader
	DDE messages
	Apple events

	Using OLE	OLE capabilities in Acrobat	On-screen rendering
	Remote control of Acrobat
	PDF browser controls

	Development environment considerations	Environment configuration
	Necessary C knowledge

	Using the Acrobat OLE interfaces	About the CAcro classes
	About the COleDispatchDriver class
	Using COleDispatchDriver objects and methods

	Using the JSObject interface	Adding a reference to the Acrobat type library
	Creating a simple application
	Working with annotations
	Spell-checking a document
	Tips for translating JavaScript to JSObject

	Other development topics	Synchronous messaging
	MDI applications
	Event handling in child windows
	Determining if an Acrobat application is running
	Exiting from an application

	Summary of OLE objects and methods

	Using DDE
	Using Apple Events
	OLE Automation	AcroExch.App	Methods
	CloseAllDocs
	Exit
	GetActiveDoc
	GetActiveTool
	GetAVDoc
	GetFrame
	GetInterface
	GetLanguage
	GetNumAVDocs
	GetPreferenceEx
	Hide
	Lock
	Minimize
	Maximize
	MenuItemExecute
	MenuItemIsEnabled
	MenuItemIsMarked
	MenuItemRemove
	Restore
	SetActiveTool
	SetFrame
	SetPreference
	SetPreferenceEx
	Show
	ToolButtonIsEnabled
	ToolButtonRemove
	Unlock
	UnlockEx

	AcroExch.AVDoc	Methods
	BringToFront
	ClearSelection
	Close
	FindText
	GetAVPageView
	GetFrame
	GetPDDoc
	GetTitle
	GetViewMode
	IsValid
	Maximize
	Open
	OpenInWindow
	OpenInWindowEx
	PrintPages
	PrintPagesEx
	PrintPagesSilent
	PrintPagesSilentEx
	SetFrame
	SetTextSelection
	SetTitle
	SetViewMode
	ShowTextSelect

	AcroExch.AVPageView	Methods
	DevicePointToPage
	DoGoBack
	DoGoForward
	GetAperture
	GetAVDoc
	GetDoc
	GetPage
	GetPageNum
	GetZoom
	GetZoomType
	Goto
	PointToDevice
	ReadPageDown
	ReadPageUp
	ScrollTo
	ZoomTo

	AcroExch.HiliteList	Add

	AcroExch.PDAnnot	Methods
	GetColor
	GetContents
	GetDate
	GetRect
	GetSubtype
	GetTitle
	IsEqual
	IsOpen
	IsValid
	Perform
	SetColor
	SetContents
	SetDate
	SetOpen
	SetRect
	SetTitle

	AcroExch.PDBookmark	Methods
	Destroy
	GetByTitle
	GetTitle
	IsValid
	Perform
	SetTitle

	AcroExch.PDDoc	Methods
	AcquirePage
	ClearFlags
	Close
	Create
	CreateTextSelect
	CreateThumbs
	CropPages
	DeletePages
	DeleteThumbs
	GetFileName
	GetFlags
	GetInfo
	GetInstanceID
	GetJSObject
	GetNumPages
	GetPageMode
	GetPermanentID
	InsertPages
	MovePage
	Open
	OpenAVDoc
	ReplacePages
	Save
	SetFlags
	SetInfo

	AcroExch.PDPage	Methods
	AddAnnot
	AddNewAnnot
	CopyToClipboard
	CreatePageHilite
	CreateWordHilite
	CropPage
	Draw
	DrawEx
	GetAnnot
	GetAnnotIndex
	GetDoc
	GetNumAnnots
	GetNumber
	GetRotate
	GetSize
	RemoveAnnot
	SetRotate

	AcroExch.PDTextSelect	Methods
	Destroy
	GetBoundingRect
	GetNumText
	GetPage
	GetText

	AcroExch.Point	X
	Y

	AcroExch.Rect	Bottom
	Left
	Right
	Top

	AcroExch.Time	Date
	Hour
	Millisecond
	Minute
	Month
	Second
	Year

	AxAcroPDFLib.AxAcroPDF	Methods
	GetVersions
	GoBackwardStack
	GoForwardStack
	GotoFirstPage
	GotoLastPage
	GotoNextPage
	GotoPreviousPage
	LoadFile
	Print
	PrintAll
	PrintAllFit
	PrintPages
	PrintPagesFit
	PrintWithDialog
	SetCurrentHighlight
	SetCurrentPage
	SetLayoutMode
	SetNamedDest
	SetPageMode
	SetShowScrollbars
	SetShowToolbar
	SetView
	SetViewRect
	SetViewScroll
	SetZoom
	SetZoomScroll
	Src

	DDE Messages	AppExit
	AppHide
	AppShow
	CloseAllDocs
	DocClose
	DocDeletePages
	DocFind
	DocGoTo
	DocGoToNameDest
	DocInsertPages
	DocOpen
	DocPageDown
	DocPageLeft
	DocPageRight
	DocPageUp
	DocPrint
	DocReplacePages
	DocSave
	DocSaveAs
	DocScrollTo
	DocSetViewMode
	DocZoomTo
	FileOpen
	FileOpenEx
	FilePrint
	FilePrintEx
	FilePrintSilent
	FilePrintSilentEx
	FilePrintTo
	FilePrintToEx
	FullMenus
	HideToolbar
	MenuitemExecute
	ShortMenus
	ShowToolbar

	Apple Event Objects and Apple Events	Objects	annotation
	application
	AVPageView
	bookmark
	conversion
	EPS Conversion
	Link Annotation
	menu
	menu item
	PDAnnot
	PDBookMark
	PDLinkAnnot
	PDPage
	PDTextAnnot
	PDF Window
	PostScript Conversion
	Text Annotation

	Required suite events	open
	print
	quit
	run

	Core suite events	close
	count
	delete
	exists
	get
	make
	move
	open
	quit
	save
	set

	Acrobat application events	bring to front
	clear selection
	close all docs
	create thumbs
	delete pages
	delete thumbs
	execute
	find next note
	find text
	get info
	go backward
	go forward
	goto
	goto next
	goto previous
	insert pages
	is toolbutton enabled
	maximize
	perform
	print pages
	read page down
	read page up
	remove toolbutton
	replace pages
	scroll
	select text
	set info
	zoom

	Miscellaneous events	do script

	Acrobat Catalog Plug-In	Catalog Windows messages
	Catalog DDE methods	AppExit
	AppFront
	FileBuild
	FileOpen
	FilePurge

	Acrobat Forms Plug-In	Forms plug-in OLE automation
	AFormApp
	Field	Methods
	PopulateListOrComboBox
	SetBackgroundColor
	SetBorderColor
	SetButtonCaption
	SetButtonIcon
	SetExportValues
	SetForegroundColor
	SetJavaScriptAction
	SetResetFormAction
	SetSubmitFormAction
	Properties
	Alignment
	BorderStyle
	BorderWidth
	ButtonLayout
	CalcOrderIndex
	CharLimit
	DefaultValue
	Editable
	Highlight
	IsHidden
	IsMultiline
	IsPassword
	IsReadOnly
	IsRequired
	IsTerminal
	Name
	NoViewFlag
	PrintFlag
	Style
	TextFont
	TextSize
	Type
	Value

	Fields	Methods
	Add
	AddDocJavascript
	ExecuteThisJavascript
	ExportAsFDF
	ExportAsHtml
	ImportAnFDF
	Remove
	Properties
	Count
	Item
	_NewEnum

	Acrobat Search Plug-in	Search plug-in using DDE	Simple query item
	Query item
	Query options
	Query language type constants
	Word option bit-flag constants
	Manipulating indexes through DDE
	Options
	Index operation selectors

	Search plug-in using Apple events	SearchAddIndex
	SearchCountIndexList
	SearchDoQuery
	Word options for Apple events
	SearchGetIndexByPath
	SearchGetIndexFlags
	SearchGetIndexList
	SearchGetIndexPath
	SearchGetIndexTitle
	SearchGetNthIndex
	SearchRemoveIndex
	SearchSetIndexFlags

	Search lists	Menu item names
	Toolbar button names

	Coordinate Systems	User space
	Device space

	Master Doc Search and TOC

	Acrobat-PDFL SDK: JavaScript APIs	Acrobat JavaScript API Reference	Version compatibility
	Overview
	Syntax	Method arguments
	Parameter help

	Paths	Safe path

	Privileged context
	Privileged versus non-privileged context
	User preferences
	Table quick key
	Domain names in code samples

	Changes Across Versions	Acrobat XI changes	Changes to PrintParams object

	Acrobat X changes	New JavaScript version
	Impact of Acrobat menu restructuring on JavaScript APIs
	New util method
	Changes to search object
	Changes to SearchExecuteQuery
	Function SearchIsLegacySearchAvailable deprecated
	Enhancements to PDFOptPDFVersion
	Enhancements to Doc object
	Signature support for Emerging PAdES ETSI ESI standard
	ADBC Support Removed from Documentation

	Acrobat 9.0 changes
	Acrobat 8.1 changes
	Acrobat 8.0 changes
	Acrobat 7.0.5 changes
	Acrobat 7.0 changes	Introduced in Acrobat 7.0
	Modified in Acrobat 7.0

	Acrobat 6.0 changes	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 changes	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe Reader 5.1

	JavaScript APIs	Alerter	Alerter methods

	AlternatePresentation	AlternatePresentation properties
	AlternatePresentation methods

	annotAttachment	annotAttachment properties

	Annotation	Annotation types
	Annotation properties
	Annotation methods

	AnnotRichMedia	AnnotRichMedia properties
	AnnotRichMedia methods

	Annot3D	Annot3D properties

	app	app properties
	app methods

	app.media	app.media properties
	app.media methods

	Bookmark	Bookmark properties
	Bookmark methods

	catalog	catalog properties
	catalog methods

	CatalogJob	CatalogJob properties

	Certificate	Certificate properties

	Collab	Collab methods

	color	Color arrays
	color properties
	color methods

	colorConvertAction	colorConvertAction properties

	Collection	Collection properties
	Collection methods

	collectionField	collectionField properties

	Column	Column properties

	ColumnInfo	ColumnInfo properties

	console	console methods

	Data	Data properties
	Data methods

	DataSourceInfo	DataSourceInfo properties

	dbg	dbg properties
	dbg methods

	Dialog	Dialog methods

	DirConnection	DirConnection properties
	DirConnection methods

	Directory	Directory properties
	Directory methods

	Embedded PDF	Embedded PDF properties
	Embedded PDF methods

	Error	Error properties
	Error methods

	event	Event type/name combinations
	Document Event Processing
	Form event processing
	Multimedia event processing
	event properties

	EventListener	EventListener methods

	Events	Events methods

	FDF	FDF properties
	FDF methods

	Field	Field versus widget attributes
	Field properties
	Field methods

	FullScreen	FullScreen properties

	global	Creating global properties
	Deleting global properties
	Global object security policy
	global methods

	HostContainer	HostContainer properties
	HostContainer methods

	Icon
	Icon Stream
	identity	identity properties

	Index	Index properties
	Index methods

	Link	Link properties
	Link methods

	Monitor	Monitor properties

	Monitors	Monitors methods

	Net	Net properties
	Net methods

	Net.HTTP	Net.HTTP methods

	OCG	OCG properties
	OCG methods
	PlayerInfo properties
	PlayerInfo methods

	PlayerInfoList	PlayerInfoList methods

	PlugIn	PlugIn properties

	PrintParams	PrintParams properties

	RDN
	ReadStream
	Rendition	Rendition properties
	Rendition methods

	Report	Report properties
	Report methods

	Row
	ScreenAnnot	ScreenAnnot properties
	ScreenAnnot methods

	search	search properties
	search methods

	security	security constants
	security properties
	security methods

	SecurityHandler	SecurityHandler properties
	SecurityHandler methods

	SecurityPolicy	SecurityPolicy properties

	SignatureInfo	SignatureInfo properties

	SOAP	SOAP properties
	SOAP methods

	Sound	Sound properties
	Sound methods

	Span	Span properties

	spell	spell properties
	spell methods

	TableInfo
	Template	Template properties
	Template methods

	Thermometer	Thermometer properties
	Thermometer methods

	this
	TTS	TTS properties
	TTS methods

	util	util methods

	XFA
	XMLData	XMLData methods

	Doc and Doc.Media APIs	Doc	Doc properties
	Doc methods

	Doc.media	Doc.media properties
	Doc.media methods

	Preflight APIs	Preflight	Preflight methods

	PreflightAuditTrail	PreflightAuditTrail properties

	PreflightProfile	PreflightProfile properties
	PreflightProfile methods

	PreflightResult	PreflightResult properties
	PreflightResult methods

	Media and Marker APIs	Marker	Marker properties

	Markers	Markers properties
	Markers methods

	MediaOffset	MediaOffset properties

	MediaPlayer	MediaPlayer properties
	MediaPlayer methods

	MediaReject	MediaReject properties

	MediaSelection	MediaSelection properties

	MediaSettings	MediaSettings properties

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Samples Guide	Acrobat SDK: Samples Guide	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer
	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard
	ShowPermissions

	Master Doc Search and TOC

	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer	Limitations

	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard	Limitations

	ShowPermissions

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Accessibility	Acrobat-PDFL SDK: Accessibility	Determining rendering order and logical order	Accessing documents and pages

	Processing inaccessible documents	Processing protected documents
	Processing empty documents
	Processing unavailable documents

	Handling event notifications	Retrieving an MSAA object for an event
	Retrieving a PDF DOM object for an event

	Reading PDF Files Through MSAA	Acrobat implementation of IAccessible objects
	IGetPDDomNode interface	get_PDDomNode

	ISelectText interface	selectText

	Identifying IAccessible objects in a document	get_accID

	IAccessible method summary
	Navigation and hierarchy	accNavigate
	get_accChild
	get_accChildCount
	get_accParent

	Descriptive properties and methods	accDoDefaultAction
	get_accDefaultAction
	get_accDescription
	get_accName
	get_accRole
	get_accState
	get_accValue

	Selection and focus	accSelect
	get_accFocus
	get_accSelection

	Spatial mapping	accLocation
	accHitTest

	IAccessible object types for PDF	PDF Document
	PDF Page
	PDF Protected Document
	Empty PDF Document
	PDF Structure Element
	PDF Content Element
	PDF Comment
	PDF Link
	PDF Text Form Field
	PDF Button Form Field
	PDF CheckBox Form Field
	PDF RadioButton Form Field
	PDF ComboBox Form Field
	PDF List Box Form Field
	PDF Digital Signature Form Field
	PDF Caret

	Reading PDF Files Through the DOM Interface	IPDDomNode data types	CPDDomNodeType
	PDDom_FontStyle
	FontInfoState
	DocState
	NodeRelationship

	IPDDomNode methods	Words and lines in text
	GetParent
	GetType
	GetChild
	GetChildCount
	GetName
	GetValue
	IsSame
	GetTextContent
	GetFontInfo
	GetLocation
	GetFromID
	GetIAccessible
	ScrollTo
	GetTextInLines

	IPDDomNodeExt methods	Navigate
	ScrollToEx
	SetFocus
	GetState
	GetIndex
	GetPageNum
	DoDefaultAction
	Relationship

	IPDDomDocument methods	SetCaret
	GetCaret
	NextFocusNode
	GetFocusNode
	SelectText
	GetTextSelection
	GetSelectionBounds
	GetDocInfo
	GoToPage

	IPDDomElement Methods	GetTagName
	GetStdName
	GetID
	GetAttribute

	IPDDomWord methods	LastWordOfLine

	IPDDomGroupInfo method	GetGroupPosition

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Batch Sequences	Acrobat- PDFL SDK: Using Batch Sequences	Creating and running a batch sequence	Create a batch sequence that sets the disclosed property to true:
	To select files:
	To run a batch sequence:

	Batch processing objects	Aborting a script
	Using the this object

	Global variables
	Beginning and ending a batch job
	Debugging and testing tips

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDF Creation Settings	Acrobat-PDFL SDK: PDF Creation Settings	Terminology
	Organization of settings files
	Namespaces	Common namespace
	Othernamespaces

	Predefined settings files	Where presets are installed
	System preset information

	Reading and writing settings files	Compatibility strategies
	How applications handle incorrect settings files

	How Distiller uses Adobe PDF settings	Distiller initialization
	How Distiller processes PostScript files
	Modifying settings during the job
	Using Distiller to combine PostScript files

	Using PDF Creation Settings	Using the image settings	Image compression settings
	Automatic compression
	Non-automatic compression
	Downsampling and subsampling images
	Setting compression of text, line art, and objects
	Distiller-only image settings

	Using the font settings
	Using the color conversion settings	Distiller color conversion settings
	Creative Suite color conversion settings
	Color settings interchange

	Using the advanced Adobe PDF settings	Relationship between setpagedevice keys and job ticket keys
	Relationship between PostScript comments and job ticket keys

	Using the standards settings	Using the compliance checking settings
	Using the PDF/X output intent settings
	Distiller examples

	Common PDF Settings	Settings descriptions
	General settings	AutoRotatePages
	Binding
	CompatibilityLevel
	CompressObjects
	CoreDistVersion
	Description
	DoThumbnails
	EndPage
	ExportLayers
	HWResolution
	ImageMemory
	Namespace
	Optimize
	OtherNamespaces
	PageSize
	StartPage

	Image settings
	Color image settings	AntiAliasColorImages
	AutoFilterColorImages
	ColorACSImageDict
	ColorImageAutoFilterStrategy
	ColorImageDepth
	ColorImageDict
	ColorImageDownsampleThreshold
	ColorImageDownsampleType
	ColorImageFilter
	ColorImageMinDownsampleDepth
	ColorImageMinResolution
	ColorImageMinResolutionPolicy
	ColorImageResolution
	ConvertImagesToIndexed
	CropColorImages
	DownsampleColorImages
	EncodeColorImages
	JPEG2000ColorACSImageDict
	JPEG2000ColorImageDict

	Grayscale image settings	AntiAliasGrayImages
	AutoFilterGrayImages
	CropGrayImages
	DownsampleGrayImages
	EncodeGrayImages
	GrayACSImageDict
	GrayImageAutoFilterStrategy
	GrayImageDepth
	GrayImageDict
	GrayImageDownsampleThreshold
	GrayImageDownsampleType
	GrayImageFilter
	GrayImageMinDownsampleDepth
	GrayImageMinResolution
	GrayImageMinResolutionPolicy
	GrayImageResolution
	JPEG2000GrayACSImageDict
	JPEG2000GrayImageDict

	Monochrome image settings	AntiAliasMonoImages
	CropMonoImages
	DownsampleMonoImages
	EncodeMonoImages
	MonoImageDepth
	MonoImageDict
	MonoImageDownsampleThreshold
	MonoImageDownsampleType
	MonoImageFilter
	MonoImageMinResolution
	MonoImageMinResolutionPolicy
	MonoImageResolution

	Page Compression Setting	CompressPages

	Font settings	AlwaysEmbed
	CannotEmbedFontPolicy
	EmbedAllFonts
	EmbedOpenType
	MaxSubsetPct
	NeverEmbed
	SubsetFonts

	Color conversion settings	CalCMYKProfile
	CalGrayProfile
	CalRGBProfile
	ColorConversionStrategy
	ColorSettingsFile
	DefaultRenderingIntent
	ParseICCProfilesInComments
	PreserveDICMYKValues
	PreserveHalftoneInfo
	sRGBProfile
	TransferFunctionInfo
	UCRandBGInfo

	Advanced Adobe PDF settings	AllowPSXObjects
	AllowTransparency
	ASCII85EncodePages
	AutoPositionEPSFiles
	CreateJDFFile
	CreateJobTicket
	DetectBlends
	DetectCurves
	DSCReportingLevel
	EmbedJobOptions
	EmitDSCWarnings
	LockDistillerParams
	OPM
	ParseDSCComments
	ParseDSCCommentsForDocInfo
	PassThroughJPEGImages
	PreserveCopyPage
	PreserveEPSInfo
	PreserveFlatness
	PreserveOPIComments
	PreserveOverprintSettings
	UsePrologue

	Standards settings	CheckCompliance
	PDFX1aCheck
	PDFX3Check
	PDFXBleedBoxToTrimBoxOffset
	PDFXCompliantPDFOnly
	PDFXNoTrimBoxError
	PDFXOutputCondition
	PDFXOutputConditionIdentifier
	PDFXOutputIntentProfile
	PDFXRegistryName
	PDFXSetBleedBoxToMediaBox
	PDFXTrapped
	PDFXTrimBoxtoMediaBoxOffset

	Other Namespaces	CreativeSuite namespace settings	AddBleedMarks
	AddColorBars
	AddCropMarks
	AddPageInfo
	AddRegMarks
	BleedOffset
	ConvertColors
	DestinationProfileName
	DestinationProfileSelector
	Downsample16BitImages
	FlattenerPreset
	GenerateStructure
	IncludeBookmarks
	IncludeHyperlinks
	IncludeInteractive
	IncludeLayers
	IncludeProfiles
	MarksOffset
	MarksWeight
	MultimediaHandling
	PageMarksFile
	PageMarksFileName
	PDFXOutputIntentProfileSelector
	PreserveEditing
	UntaggedCMYKHandling
	UntaggedRGBHandling
	UseDocumentBleed

	InDesign namespace settings	AsReaderSpreads
	CropImagesToFrames
	ErrorControl
	FlattenerIgnoreSpreadOverrides
	IncludeGuidesGrids
	IncludeNonPrinting
	IncludeSlug
	OmitPlacedBitmaps
	OmitPlacedEPS
	OmitPlacedPDF
	SimulateOverprint

	Conversions Related to JDF	Creation of the basic JDF file
	Representation of PostScript keys as JDF entries	Conversion of the linear representation of setpagedevice keys

	Mapping of DSC comments into JDF elements and attributes	Composite jobs
	Pre-separated jobs with interleaved separations
	Pre-separated single-colorant jobs

	Mapping of parameters into JDF elements and attributes	General
	Image compression
	Page compression
	Fonts
	Color conversion
	Advanced
	PDF/X
	Conversion of parameters not available through the user interface

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDFMark Reference	Acrobat-PDFL SDK: PDFMark Reference
	Introduction	Syntax of pdfmark operators
	Usage with standard PostScript interpreters
	Syntax for private keys
	Named objects	Built-in named objects
	User-defined named objects
	Namespaces
	Adding content to named objects

	Basic Features	Annotations (ANN)	Text annotations (notes)
	Links
	Other annotations

	Articles (ARTICLE)
	Bookmarks (OUT)
	Document Info dictionary (DOCINFO)
	Document open options (DOCVIEW)
	Embedded file content (EMBED)	Distiller command line options to enable file embedding

	Graphics encapsulation (BP, EP, SP)
	Marked content (MP, DP, BMC, BDC, EMC)	Marked-content points
	Marked-content sequences

	Metadata (Metadata)
	Named images (NI)
	Page crops (PAGE, PAGES)
	Page label and plate color (PAGELABEL)
	Transparency (SetTransparency)	Transparency group XObject and soft mask

	Actions and Destinations	Actions	GoTo actions
	GoToR actions
	Launch actions
	Article actions

	Destinations	View destinations
	Defining named destinations
	Referencing named destinations

	Logical Structure	Elements and parents
	Structure operators
	Structure Tree Root	StRoleMap
	StClassMap

	Elements	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Element content	StBMC
	StBDC
	EMC
	StOBJ

	Attribute objects	StAttr

	Storage and retrieval of the implicit parent stack	StStore
	StRetrieve

	EPS considerations
	Tagged PDF

	Examples	Building an Output Intents array
	Named object examples
	Forms examples
	Structure examples

	JDF Features	Syntax
	XPath Examples

	Distilling Optional Content	Initialization and termination code
	Procedure definitions	AddASEvent
	BeginOC
	EndOC
	GetOCGPdfmarkTag
	OCEndPage
	SetOCGInitState
	SetOCGIntent
	SetOCGUsage
	SimpleOC

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Sample mapping table	Root node
	Emit-string
	Walk-structure
	Define-event-list
	Define-proc-list

	Editing the mapping tables

	Mapping Table Elements Reference	Call-event-list
	Call-proc-list
	Comment
	Conditional-delimiter
	Conditional-prefix
	Conditional-suffix
	Define-event-list
	Define-proc-list
	Element-name
	Emit-all-metadata
	Emit-string
	Evaluate-var
	Event
	Proc-doc-text
	Proc-enum
	Proc-enum-choice
	Proc-fixed
	Proc-graphic-content
	Proc-hex
	Proc-image-content
	Proc-integer
	Proc-length
	Proc-pixels
	Proc-property
	Proc-string
	Proc-var
	Property-name
	Property-type
	Root
	Void
	Walk-cached-property-sets
	Walk-children
	Walk-layout
	Walk-metadata
	Walk-proplist
	Walk-structure

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Snippet Runner Cookbook	Acrobat-PDFL SDK: Snippet Runner Cookbook
	Installing and Running SnippetRunner	SnippetRunner Common Interface	Installing the Common Interface
	Starting the SnippetRunner
	Starting the Common Interface for PDFL
	Creating the configuration file

	Running as a standalone Java application
	Running as a Java applet
	Known issues
	Using the Common Interface

	Writing Snippets	Passing parameters to snippets
	Toggling behavior and asynchronous snippets
	Handling exceptions
	Handling documents

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Tracker	Acrobat-PDFL SDK: Tracker APIs	Benefits of RSS
	Customizing the interface

	Tracker API	Tracker URL API	Add a subscription
	Update a subscription
	Select a subscription
	Remove a subscription
	Convert a subscription to a PDF file
	Display Tracker

	RSS XML feed extensions	Namespace
	Channel extensions
	Item extensions

	User interface driver	Dialog object
	Driver object
	Layout description object
	RSS object
	Selection object

	Customization Examples	Grouping elements
	Adding an external interface driver

	Master Doc Search and TOC

	Acrobat-PDFL SDK: 3D API Reference	Acrobat-PDFL SDK: JS 3D APIs	Object overview	Basic objects
	Scene object
	Canvas object
	Runtime object
	Console object
	Resource objects
	Event handlers
	CameraEvent
	KeyEvent
	MenuEvent
	MouseEvent
	RenderEvent
	ScrollWheelEvent
	SelectionEvent
	TimeEvent
	ToolEvent

	JavaScript Objects for Acrobat 3D	Animation
	Background	getColor
	getImage
	setColor
	setImage

	Bone
	BoundingBox
	Camera	getScreenFromPosition
	getDirectionFromScreen

	CameraEvent
	CameraEventHandler	CameraEventHandler
	onEvent

	Canvas	getCamera
	setCamera

	ClippingPlane	remove

	Color	Color
	Color
	set
	set
	set3

	Console	print
	println

	Dummy
	FlashEvent
	FlashEventHandler	onEvent
	FlashEventHandler

	FlashMovie	FlashMovie
	call
	getVariable
	gotoFrame
	isPlaying
	pan
	play
	rewind
	setVariable
	setZoomRect
	stop
	zoom

	HitInfo
	Host
	Image	Image

	KeyEvent
	KeyEventHandler	KeyEventHandler
	onEvent

	Light
	Material	attachFlashMovie

	Matrix4x4	Matrix4x4
	Matrix4x4
	invertInPlace
	isEqual
	multiply
	multiplyInPlace
	rotateWithQuaternion
	rotateWithQuaternionInPlace
	rotateAboutLine
	rotateAboutLineInPlace
	rotateAboutX
	rotateAboutXInPlace
	rotateAboutVector
	rotateAboutVectorInPlace
	rotateAboutY
	rotateAboutYInPlace
	rotateAboutZ
	rotateAboutZInPlace
	scale
	scaleInPlace
	set
	set
	set
	setIdentity
	setView
	transformDirection
	transformPosition
	translate
	translateInPlace
	transposeInPlace

	MenuEvent
	MenuEventHandler	MenuEventHandler
	onEvent

	Mesh	computeBoundingBox
	setColor

	MouseEvent
	MouseEventHandler	MouseEventHandler
	onEvent

	Node	detachFromCurrentAnimation

	Procedural
	Quaternion	Quaternion
	Quaternion
	Quaternion
	interpolate
	interpolateInPlace
	normalize

	RenderEvent
	RenderEventHandler	RenderEventHandler
	onEvent

	RenderOptions
	Resource	Resource

	Runtime	addCustomMenuItem
	addCustomToolButton
	addEventHandler
	disableTool
	enableTool
	getEventHandler
	getRendererName
	getView
	getView
	pause
	play
	refresh
	removeEventHandler
	removeCustomMenuItem
	removeCustomToolButton
	setCurrentTool
	setCustomMenuItemChecked
	setView
	setView

	Scene	activateAnimation
	addFlashForeground
	addModel
	createClippingPlane
	createLight
	createSquareMesh
	computeBoundingBox
	update

	SceneObject
	SceneObjectList	getByGUID
	getByID
	getByIndex
	getByName
	removeAll
	removeByIndex
	removeItem

	ScrollWheelEvent
	ScrollWheelEventHandler	ScrollWheelEventHandler
	onEvent

	SelectionEvent
	SelectionEventHandler	SelectionEventHandler
	onEvent

	StateEvent
	StateEventHandler	onEvent
	StateEventHandler

	Texture	getImage
	setImage

	TimeEvent
	TimeEventHandler	TimeEventHandler
	onEvent

	ToolEvent
	ToolEventHandler	ToolEventHandler
	onEvent

	Vector3	Vector3
	Vector3
	add
	addInPlace
	addScaled
	addScaledInPlace
	blend
	blendInPlace
	cross
	dot
	normalize
	scale
	scaleInPlace
	set
	set
	set3
	subtract
	subtractInPlace

	View

	Master Doc Search and TOC

 Acrobat Developer Home
 Document Services SDK
 Acrobat Sign SDK
 Acrobat SDK
 PDF Library SDK

 Console

 Acrobat-PDFL SDK Documentation

 	 »
	Acrobat-PDFL SDK: Plugin Development »
	Working with Acrobat Extended APIs
	

 Next

 Previous

Working with Acrobat Extended APIs¶

Some of Acrobat’s default plugins expose their APIs for use by third parties. These are Acrobat’s extended APIs. These APIs are specified in the Acrobat and PDF Library API Reference.

Search extended API¶

The Adobe Acrobat Search plugin allows users to perform text searches in PDF documents. It adds menus, menu items, a toolbar button, and a Search panel to the Acrobat viewer.

The Search plugin exports a host function table (HFT) that contains methods that can be used by other plugins. The HFT’s name is Search, and its version number is 0. To use the Search plugin’s HFT, a plugin must include the header file SrchClls.h. The plugin must also import the HFT using the ASExtensionMgrGetHFT method and assign the HFT returned by this call to a plugin-defined global variable named gSearchHFT. (See Working with Host Function Tables.)

Acrobat 6.0 and later has two versions of the Search plugin:

	The Search plugin uses a search engine licensed from Lextek International. Lextek can be contacted at http: //www.lextek.com.

	The Search5 plugin uses a search engine licensed from Verity, Inc. Verity can be contacted at http: //www.verity.com.

You can perform the following tasks with either version of the Search plugin:

	Create or delete indexes

	Determine what indexes are available

	Send queries to an existing index

You cannot use either version of the Search plugin to directly obtain the results of a search, for manipulation or for display in an application other than Adobe Acrobat. For information about the methods included in the Search extended API, see the Acrobat and PDF Library API Reference.

Catalog extended API¶

Acrobat Catalog is a plugin that allows you to create a full-text index of a set of PDF documents. A full-text index is a searchable database of all the text in the documents. After building an index, you can use the Search command to search the entire library quickly. Searches of full-text indexes created using Catalog are faster and more convenient than using the Find command.

The Catalog plugin has an HFT consisting of several methods that plugin developers can import and use. In addition, Catalog supports DDE, and broadcasts several Windows messages. For information about the methods included in the Catalog extended API, see the Acrobat and PDF Library API Reference.

PDF Consultant and Accessibility Checker extended API¶

Acrobat comes with a plugin called the PDF Consultant and Accessibility Checker. This plugin walks through PDF documents, visiting each object and determining its type and other statistics. It can make certain modifications or repairs to the PDF document. The objects that the consultant visits can range from simple, primitive types such as Cos strings to higher-level objects such as images. Users invoke the consultant to operate on a particular PDF document, choose which tests or repairs to run, then view the results and select repair options.

The consultant visits the objects in a PDF document according to instructional flags you pass to it. After the consultant visits an object, the object may be different. The consultant reclassifies modified objects before moving on to the next object.

As the consultant traverses a PDF document, gathering objects of interest, it can perform the following tasks:

	Walk a given hierarchy

	Keep track of cycles

	Ensure that objects are only visited once, if desired

	Recognize object types

	Keep a traversal stack list

Acrobat agents¶

The consultant accomplishes its task by using agents, which are pieces of code you design to gather the statistics and recommend to the consultant the necessary repairs of the document. Separate agents handle each area of analysis and repair. The agents inform the consultant of the particular types of objects in which they are interested by registering with the consultant. When the consultant has one or more agents registered, it hands each object of the requested type(s) in the current document to each of the agents that requested that type. The consultant gives objects to each agent in turn, depending on the order in which they registered.

The consultant must intelligently determine the type of each object it comes across (both direct and indirect), so it can pass appropriate objects to the agents, or replace or remove ones that it has been instructed to handle itself. The consultant communicates directly with agents, keeping lists of which agents are interested in which objects, and obtaining instructions from the agent as to an object’s visitation status.

Agents can perform their own repairs and modifications to the PDF document, and can return a corrected object to serve as a replacement for the object the consultant originally passed to it. Agents can also modify the Cos graph themselves (including adding or removing Cos objects or modifying the contents such as keys or array elements).

The consultant keeps a list of each object (starting with the object which began the traversal) that it visits on its way to any given object. Agents must be careful not to make any modifications that would affect any of the objects in the list, which is referred to as the traversal stack. For this reason, agents can specify a post-processing callback that the consultant invokes once it has finished traversing the entire document.

Reclassifying and revisiting¶

If an agent or the consultant modifies an object, the consultant reclassifies that object, possibly changing its type.

Agents also pass visitation flags to the consultant that determine how object types should be visited. Limiting the traversal is important, as PDF documents are graphs, arbitrarily complex, and often there are many ways to visit a single object. If the consultant reclassifies an object, it may also change the way that object is revisited. You must keep this in mind as you develop your agents.

Agent architecture¶

Your agent code will primarily consist of a structure, as defined in the ConsExpt.h header file. Acrobat provides a C++ wrapper class to facilitate writing agents; you can derive an agent class from this base class.

How the consultant works¶

The consultant completes a full, non-recursive traversal of the Cos graph that comprises a PDF document, keeping track of cycles as it goes. Note that there is no guarantee that objects will be visited in any particular order, only that the consultant will visit all objects (except isolated objects such as the DocInfo object or previously orphaned objects) at least once, provided no agents modify the graph such that graph paths are removed or redirected.

Removing or modifying objects¶

If an agent removes, replaces, or modifies an object, the consultant passes the modified objects (if they are encountered) to other agents. For example, DictA refers to DictB.The first agent replaces all references to DictB with references to DictC, so when later agents receive DicA from the consultant, they will see the references to DictC.

Reclassifying objects¶

In general, the consultant reclassifies an object after an agent is finished performing operations on it. It is possible that, in the process of modifying the object, the agent may actually change the type of the object. This could mean that agents originally interested in the object may not be interested in it. So the consultant must reclassify an object after each agent has finished with it. Because the default behavior in the revisit upon reclassification mode is to revisit objects when they are reclassified, new objects added in this mode will actually be visited again if they are reclassified as the traversal continues.

Determining the higher-level type (the PDFObjType, as the consultant code calls it) of a given Cos object is not always easy. The consultant not only looks at the construction of objects (what keys are present in the object) but also at how the object was reached (through what particular object type and via what keys). Objects that are interpreted differently depending on how they are traversed can be properly identified.

Consultant process¶

The following steps describe the consultant process:

	You create a consultant.

	You create an agent.

	Register your agent with the consultant, with information as to which object types are of interest.

	The user invokes the consultant to work on a particular PDF document.

	The consultant creates a traversal stack to keep track of where it is in walking through the PDF document.

	The consultant begins traversing the PDF document. If agents have instructed the consultant to modify or remove the object, it does so, returning the appropriate replacement.

	The consultant pushes the object onto the traversal stack and sends a message to the agent that the object was found.

	The agent sends messages to the consultant about what to do to objects: replace them, remove them, revisit them later or not.

	When the entire PDF document has been traversed, the consultant calls the agent back to perform any post-processing repairs it may want to do.

	The consultant unregisters all agents.

	You release the agent object.

	You release the consultant object.

Important issues for consultant development¶

First, you must decide if you actually do want to use a consultant. A consultant walks through an entire PDF document. If you only need to modify a small number of objects, and you know how to locate those objects, it makes more sense to write the object-finding code yourself.

If you decide to use the consultant, here are some planning considerations:

	Avoid implementing an agent that modifies objects on the traversal stack while the consultant is still walking through the document, otherwise infinite loops and other problems can occur (see Maintaining the traversal stack).

	Decide whether the consultant or the agent does the work (see Deciding consultant or the agent does the work).

	Determine order in which agents interact with the consultant. This order is important because agents can modify objects that other agents want to view (see Avoiding agent collisions).

	Decide whether to allow the consultant to revisit objects that have multiple classifications and what conditions must exist to allow such repeat visits (see Avoiding visitation collisions).

You should make your decisions about all of these issues before you write your code. Some of these issues lead to errors that are difficult to debug, so it is best to understand them all while creating your plugin.

Maintaining the traversal stack¶

The consultant keeps track of the objects it has visited in the PDF document in the traversal stack. If an agent modifies an object such that it affected the traversal stack, the entire process is derailed. The consultant may no longer know if it had visited an object, which could cause infinite loops, multiple, unnecessary visitations, or objects that remain unvisited.

It is extremely important that the integrity of the traversal stack remain undamaged. You must design your agent carefully so as to avoid this problem. You can use the postprocessing step of your agent to handle many repair tasks, thereby avoiding dealing with objects still on the traversal stack.

Deciding consultant or the agent does the work¶

If the consultant performs object modifications, it does so as it goes through its traversal. Modifications that affect an object’s type or properties alter the traversal stack and corrupt the traversal process. For these kinds of modifications, set up an agent to perform the tasks in the postprocessing step.

For example, suppose an agent wants to remove annotations while there are form widgets present in the document. There are a few ways the agent can remove the annotations while the consultant is working, but they all have problems:

	Invoking the agent for all annotations and removing them at the Cos level does not clean up the forms tree if there are Widget Annots in the document.

	Invoking the agent for all annotations and using the PDPageAnnotRemove method modifies the page object, which may still be in the traversal stack.

The best solution in this case is to enumerate all of the Annot objects by having the consultant look for Annot objects and keep a list of them, then let the agent invoke PDPageAnnotRemove on them in the post-processing step.

Avoiding agent collisions¶

When running multiple agents on a document, the order in which you register your agents is the order in which the consultant will hand them objects. If your earlier agents modify objects, they may change the objects in such a way that they are missing important information or are of a different type than they were originally. For example, one agent may consider it correct to remove a given field of an object, while another would complain that the field was not present and would want to add it. If the first agent modified the object type, subsequent agents would no longer think they were interested in it, and their processing would not take place. You must group your agents so that you do not run multiple agents with conflicting goals at the same time.

A rarer problem could occur with self-referential objects. For example, if DictA contains a reference to itself and the first agent replaces DictA with DictB (which would still contain a reference to DictA), another agent cannot work with DictB until the internal reference is changed. But if you are running the agents concurrently, there will be a collision. This would be a case best handled by the consultant.

Avoiding visitation collisions¶

Objects that have multiple classifications can be reached from multiple paths. In such cases you may allow the consultant to revisit such objects if, and only if, they were reclassified on a new path. However, you must take care not to allow revisitation under other circumstances, or the consultant could miss objects, which would defeat the reason for using a mode that considers object classification.

Importing the consultant HFTs into a plugin¶

The consultant exports its functions using an HFT. The variable name your plugin uses for the HFT must be of type HFT and named gConsultantHFT. The consultant’s HFT allows you to create consultants. The consultant exports an HFT that deals with the general operation of the consultant, including the creation and deletion of consultant objects and agent registration. You must load the consultant plugin before the HFTs plugins can import it. Importing the consultant’s HFT is the same as importing any other plugin’s HFT. (See Importing an existing HFT.)

To access the HFT, you must include the ConsHFT.h file into your project. In a plugin, the PluginImportReplaceAndRegister method should contain the code that imports the HFT.

HFT gConsultantHFT= (HFT)NULL;
ACCB1 ASBool ACCB2 PluginImportReplaceAndRegister(void)
{
 ASBool bRetVal = false;

// Import the Consultant's main HFT
 gConsultantHFT = Init_PDFConsultantHFT; // Macro in ConsHFT.h
 if(gConsultantHFT != (HFT)NULL)
 bRetVal = true;
 else

// Put in error message about the absence of the Consultant HFT
 return bRetVal;
};

The consultant defines the following methods for HFT usage:

	ConsultantCreate

	ConsultantDestroy

	ConsultantTraverseFrom

	ConsultantRegisterAgent

	ConsultantSetStart

	ConsultantNextObj

	ConsultantGetPercentDone

	ConsultantGetNumDirectVisited

	ConsultantGetNumIndirectVisited

	ConsultantSuspend

	ConsultantResume

	ConsStackGetCount

	ConsStackIndexGetObj

	ConsStackIndexGetTypeCount

	ConsStackIndexGetTypeAt

	ConsStackIndexIsDict

	ConsStackIndexIsArray

	ConsStackIndexGetDictKey

	ConsStackIndexGetArrayIndex

	PDFObjTypeGetSuperclass

	ConsultantGetNumUniqueIndirectsVisited

Creating and destroying consultants¶

The consultant’s HFT allows you to create a consultant for your own use. Once you have finished writing your agent class, you are ready to register it with the consultant and begin processing documents. You should keep your agent separate from the consultant object—that is, do not make the consultant object a member of your agent class. Use a plugin as the owner for both the consultant and your agent object.

Because there is some memory overhead in creating a consultant, you should only create a Consultant object when it is required, not before. If your target application is a plugin, the most logical place to perform all operations is in the menu item execute procedure. Whether or not it makes sense to destroy the Consultant object after each execution of the menu item depends on your project.

The consultant HFT provides the functions ConsultantCreate and ConsultantDestroy, for creating and destroying Consultant objects. It also provides the Consultant data type, an opaque type for passing handles to Consultant objects. The ConsultantCreate method returns variables of that type and requires them as parameters to all other HFT functions having the Consultant prefix.

After each run the consultant unregisters all the agents that were registered with it; however the memory for the Consultant object itself remains, and the object must be explicitly destroyed to free the memory. Depending on the duties you assign your consultant, you may want to destroy it after each execution of the menu item that launches it, or you may wish to keep it running.

Registering agents with consultants¶

In order to modify or analyze documents, you must register your agent with the consultant by invoking the ConsultantRegisterAgent method.

Once the agent is registered with the consultant, it remains registered until a call to ConsultantTraverseFrom is made. You must re-register agents before each successive call to ConsultantTraverseFrom.

When you register an agent, you supply a rule (one of the RegAgentFlag values) for revisitation of objects as the consultant runs through the document from the starting object. The following code example registers an agent with a consultant.

 // Declare volatile consultant because it is inside a DURING bloc
 // Consultant volatile hConsultant = (Consultant)NULL;

 DURING
 AVDoc hAVDoc = AVAppGetActiveDoc();
 miAssert(hAVDoc != (AVDoc)NULL);
 if(hAVDoc != (AVDoc)NULL)
 {

 // Create a Consultant object
 // hConsultant = ConsultantCreate(
 DumpAllObjectsAgentPercentDone);
 miAssert(hConsultant != (Consultant)NULL);

 if(hConsultant != (Consultant)NULL)
 {

 // Get the current document root
 // PDDoc hPDDoc = AVDocGetPDDoc(hAVDoc);

 // Create an agent and register it
 // gDumpAllObjectsAgent = new DumpAllObjectsAgent(hPDDoc);

 if((gDumpAllObjectsAgent == (DumpAllObjectsAgent*)NULL)
 || (gDumpAllObjectsAgent->IsValid() == false))
 {
 ASRaise(GenError(genErrNoMemory));
 }
 else
 {
 ConsultantRegisterAgent(hConsultant,*gDumpAllObjectsAgent,
 REG_REVISITRECLASS_ALL);

 // Start the consultant
 // ConsultantTraverseFrom(hConsultant,
 CosDocGetRoot(PDDocGetCosDoc(hPDDoc)),PT_CATALOG);
 }
 }
 }
 HANDLER
... Destroy Consultant...Free Memory...
 END_HANDLER

Starting the consultant¶

The ConsultantTraverseFrom method instructs the consultant to begin traversing a document, starting at a specific Cos object. The Cos object should be the catalog of a currently open document. The ConsultantTraverseFrom method has no return value and instead raises an exception if an error occurs. The following code example demonstrates how to use the traversal stack manipulation functions.

char* GetTraversalString(ConsStack stack, char *traversalString,
ASUns32 strLen)
{
ASUns32 Index, NumItems, CurStrLen;
char StringUns32[16]; traversalString[0] = '0';
CurStrLen = strlen(traversalString);

// Get the number of items in the current traversal
// NumItems = ConsStackGetCount(stack);

for(Index = 0; (Index < NumItems) && (CurStrLen < strLen); Index++)
{
 if((CurStrLen += strlen(TRAVERSAL_SEP)) < strLen)
 strcat(traversalString, TRAVERSAL_SEP);

// Add the parent key, if this stack entry has one */
// if(ConsStackIndexIsDict(stack, Index))
 {
 char* strParentKey = ASAtomGetString(ConsStackIndexGetDictKey(stack,
 Index));
 if((CurStrLen += strlen(strParentKey)) < strLen)
 strcat(traversalString, strParentKey);
 }

// Add the parent index, if this stack entry has one
// else if(ConsStackIndexIsArray(stack, Index))
{
 sprintf(StringUns32, "%u",
 ConsStackIndexGetArrayIndex(stack, Index));
 if((CurStrLen += (strlen(StringUns32) + 2)) < strLen)
 {
 strcat(traversalString, "[");
 strcat(traversalString, StringUns32);
 strcat(traversalString, "]");
 }
 }
}
return traversalString;
}

Consultant object type identification¶

One of the main features the PDF Consultant and Accessibility Checker framework gives you is the use of its identification engine. This engine can look at Cos objects in a PDF file and, based on properties of the objects and of the object’s parents, assign PDF object type identifiers to them.

Each Cos object has a simple Cos type and attributes, in the scheme of the document as a whole each object serves a particular purpose. The PDF object type assigned to each object represents that object’s role in the PDF document.

Some PDF object types represent higher-level, conceptually-familiar objects like PT_PAGE (which indicates that the object is a page in the document), while others (like PT_AADICTIONARY) are a bit more obscure, particularly to those who are not familiar with the PDF document format. PDF object types are represented using the enumerated type PDFObjType, which is defined in ConsObTp.h. A good way to see all of the various PDF object types that the consultant can identify is to look at the constants defined in that file.

Some object types (in particular many simpler objects such as strings and numbers) are not assigned a particular type. The consultant can identify those objects that are of most use to you. If the consultant cannot identify a specific object, it assigns the identity of PT_UNKNOWN to the object. Just because the consultant assigns this value to an object does not mean the object is foreign or invalid (although it can potentially mean that), it may simply mean that the object type is not particularly significant in the realm of the PDF document format, and thus the consultant does not know about it.

To allow for greater agent flexibility, the consultant understands PDF object type subclasses and superclasses. Certain PDF object types are members of more generic classes of PDF object type. Agents can often make use of this information, so the consultant assigns object types that are actually arrays of types.

The consultant assigns to an object the most specific classification as well as the more generic classes of which the object is a member. Agent structures include a field called WantSubclasses that indicates whether or not the agent wants to be called for all the interesting objects’ subclasses as well as their directly interesting types.

For example, the PT_ANNOTATION object type has a number of more specific subclasses such as PT_LINKANNOTATION, PT_LINEANNOTATION, and so on. If an agent requests only objects of type PT_ANNOTATION, and its WantSubclasses member is false, it may not be called back for very many objects. If the WantSubclasses member is true, then the consultant will invoke the agent back for objects of all specific types of annotations as well as those classified only as PT_ANNOTATION. This also means that when an agent retrieves the type of an object, it must specify which type it wants. The types in the array that is the classification of the object always go from the most specific (at index 0) to the least specific (the last index in the array).

Creating an agent class¶

A minimal Agent class needs only to define the functions defined as virtual in the ConsultantAgentObject class declared in ConsExpt.h. The following example shows this definition.

#include "ConsExpt.h"
class DumpAllObjectsAgent : public ConsultantAgentObj
{
protected:

// Data members
// FILE* m_DumpFile;
const static PDFObjType s_hAgentObjects[];
const static ASUns32 s_iNumAgentObjects;
public:

// Constructor / destructor
// DumpAllObjectsAgent(PDDoc hPDDoc);
virtual ~DumpAllObjectsAgent(void);

// Required methods
// virtual void ConsAgentPostProcess(void);
virtual ASInt32 ObjFound(CosObj Obj, const PDFObjType*
pObjTypeHierarchy,
const ASUns32 SizeObjHierarchy,
TraversalStack Stack,CosObj* pObjToReturn);
};

Creating agent constructors¶

In order to write an Agent class derived from the ConsultantAgentObj base class, you must invoke the base constructor in the derived classes construction list. The base constructor requires a constant array of so-called objects of interest (of type PDFObjType) as well as the length of the array (as ASUns32) to be passed as parameters. It is up to you as to where and how the array of types is stored; however, the storage must persist, as the base class saves only a pointer to the data. This has important implications for authoring agents; the derived class cannot initialize the data in its own constructor since the base constructor is called first.

The following example shows an example constructor. In the Agent example the array types and array length are static data members of the Agent class. In larger-scale systems it is better to create a host object for the agent that is responsible for determining the proper objects to include in the array and for passing them on to the Agent constructor. The list of object types is passed on to the consultant when ConsultantRegisterAgent is invoked.

// Define static const data to be passed to parent class constructor
// const ASUns32 DumpAllObjectsAgent::s_iNumAgentObjects = 1;
const PDFObjType
DumpAllObjectsAgent::s_hAgentObjects[DumpAllObjectsAgent::

s_iNumAgentObjects] = {DT_ALL};

// Derived Agent class constructor
DumpAllObjectsAgent::DumpAllObjectsAgent(PDDoc hPDDoc) :
ConsultantAgentObj(&s_hAgentObjects[0], s_iNumAgentObjects)
{
Open Temporary File and Initialize Data Members...}
}

Recognizing objects of interest¶

Agents register a list of objects with the consultant in which they are interested. When the consultant classifies an object as any of the types the agent registered with, the consultant calls the ObjFound callback function, a virtual function in the ConsultantAgentObj base class.

	The parameters the consultant passes to this function allow the function to set up a return value with information about the current object, its parents, and the state of the consultant traversal stack.

	The return value from the callback is an OR of bit flags that instruct the consultant on handling the current object.

In the Creating agent constructors example, an Agent constructor simply gathers information about each object encountered and outputs it to a file. It does not need to have the consultant make any modifications to the document. Therefore, in the definition of the ObjFound callback function, the return value is always OD_NOCHANGE and the object returned in pObjToReturn is simply the same object that was found. In many cases it makes the most sense for an agent to make all document modifications itself, without the consultant’s replace and remove facilities. In these cases you must take special care not to modify objects that are currently on the consultant’s traversal stack.

The DumpAllObjects plugin demonstrates that PDFConsultant agents can access any Cos object from any point in the document. The plugin writes information about certain Cos objects to an output file, called AllObjects.txt.

The ObjFound callback function of the DumpAllObjects agent writes to a file the Cos object traversal path that it took to reach a specific Cos object. The function calls GetTraversalString, which describes, with respect to other objects, where a given object lives in the document. For example, the following shows the format of a traversal path of a text annotation:

18 0 obj PT_TEXTANNOTATION | PT_ANNOTATION | ->AcroForm->Fields->[0]->
 P->Annots->[1]

The consultant looks at all Cos objects. To simplify the output, the DumpAllObjects agent only involves the most common Cos objects: CosString, CosDict, CosArray, and CosStream.

Post processing stage¶

The second and final required function definition in any ConsultantAgentObj derived class is the PostProcess callback. This function is called when the consultant has finished its traversal and is preparing to unregister agents to prepare for the next possible run. This callback takes no parameters and returns no values (see ConsAgentPostProcessCallback). There are also no restrictions on what types of operations the Agent can perform on the document in this function.

The PostProcess callback function is the place to perform any operations that may otherwise damage the consultant’s traversal by modifying objects up the consultant’s current traversal stack.

Digital signature extended API¶

Digital signatures allow a person to attest to something about a document by signing their name to it. An Acrobat signature in a document is bound to that document in such a way that altering the signed document or moving the signature to a different document invalidates the signature.

A single document may be signed more than once, and changes may occur between signings. Acrobat’s digital signatures link each signature with a particular state of the document. All changes append the PDF changes to the fully-preserved base PDF document. The ability to do serial signatures of protected documents is unique to Acrobat, and draws heavily on the PDF file design for an appended save.

Adobe Acrobat implements digital signatures using plugins that can handle both generic functions common to all digital signatures, and also specific kinds of signatures (signing methods), such as public-private key (PPK), handwriting, retinal scans, fingerprints, and so on.

The following diagram shows the security plugin relationships.

For information about the APIs that make up the Digital signature extended API, see the Acrobat and PDF Library API Reference.

The PubSec layer¶

The PubSec layer, introduced in Acrobat 6.0, is an interface for Acrobat public-key security handlers. PubSec forms a high-level interface to the digital signature facility; the PubSec code uses DigSig for digital signature operations, but provides many additional benefits. Developers are encouraged to use the PubSec HFT rather then DigSig HFT.

PubSec methods enable you to perform the following tasks:

	Count and close encrypted documents.

	Validate a specific signature field.

	Access and create digests for data buffers.

	Import and export certificate data, and manage the certificates in the Acrobat Address Book (AAB).

	Manage signature appearances (DSAP files).

	Register and unregister handlers. Handlers can register as PubSec handlers to provide the following cryptographic services:

	Do private-key signing and signature validation

	Act as a cryptographic source for decrypting using private keys

	Act as a directory source for certificate-based identity authentication

Handlers can call back into the PubSec HFT for various services. Most calls to PubSec pass an opaque state object called a PSEngine. You specify a default engine upon registering the handler, and the default engine can make use of the security UI dialog boxes provided by PubSec and DigSig.

To register a handler with PubSec, perform the following tasks:

	Implement the callbacks you need to provide customized functionality. Many of the callbacks for PubSec can be specified as NULL, in which case PubSec provides default behavior. It is recommended that you use the default behavior when possible.

	Fill in the handler structure with pointers to your callback implementations (PubSecHandler).

	Register the handler with PubSec by invoking the PSRegisterHandler method.

Digital signature components¶

Digital signatures contain two parts:

	The signature field dictionary which is the PDF dictionary structure that stores information about the signature.

	The signature annotation with its associated appearance (including the background and layout of name, time, and so on). A blind digital signature does not have an associated appearance.

Acrobat’s digital signature plugin creates these two parts when the user chooses to sign a document. Your plugins do not have to handle deleting the signature, as the DigSig plugin does that transparently.

Digital signature scenarios¶

Acrobat supports three digital signature scenarios. Acrobat’s Digital Signature plugin handles the first case, and allows other plugins to further handle the second and the third cases.[The following steps look as if they are part of a procedure, but I don’t think they are. If they’re simply three scenarios, they should be bulleted items, 5Heads, or perhaps reworked as inline headings with text. The other situation where we use a numbered list is if order is important, but I don’t think that is the situation here either. The Adobe editorial style guide says “A numbered list should be sequential. If the items in the list are not sequential, don’t number them.]

	If the user creates a signature field and does not specify a default signing method, DigSig handles that case with no communication to your plugins:

	DigSig creates the signature field dictionary.

	DigSig creates the signature annotation dictionary.

	DigSig creates the (blank) signature appearance dictionary.

	The Forms plugin also creates Signature fields. If the user creates a signature field and specifies a default method, Forms calls DigSig to fill in default values:

	DigSig creates the signature field dictionary, the signature annotation dictionary, and the (blank) signature appearance dictionary.

	DigSig calls the DSDefaultValueProc callback that your plugin provides. This callback must create the default signature value dictionary and create the /DV key in the signature field dictionary to point to it.

	If the user asks to sign a specific signature field using the plugin, DigSig invokes callbacks into your plugin during a four-step sequence. Your plugin must register these callbacks during the plugin initialization phase. The four callbacks required for this scenario are:

	dsNewSigData

	dsCommitSign

	dsFinshSign

	dsFreeSigData

Initializing the digital signature plugin¶

When Acrobat is started, all plugins go through a three-step initialization process that allows plugins to establish communication among themselves without being dependent on the order of loading. Plugins that interact with Acrobat’s digital signature plugin (DigSig) use the following initialization sequence:

	The DigSig plugin exports its HFT under the name DigSigHFT.

	To work with DigSig, your plugin must import the DigSig HFT.

	To work with DigSig, your plugin must create a DigSigHandlerRec structure, assign the relevant methods, and then invoke the DigSigRegisterFilter method to register the structure.

When the user opens a document, the digital signature plugin notifies your plugin of the new document by invoking the DSDocOpenProc method. You can allocate some storage or choose to automatically validate any of their respective signatures in the document.

Auto-validation may produce significant delays if it must read all of a large document from a CD-ROM or over a network, or if it must access a signature registry or authority over a network. Therefore, Adobe software only accesses signatures at user request.

When the user closes a document, the digital signature plugin invokes DSDocCloseProc.

Understanding the process¶

The steps in this section are suggestions that describe the interactions of a digital signature plugin (the SignDoc sample plugin provided with this SDK is a more complete example).

Dialogs and signature gathering¶

The digital signature plugin invokes your dsNewSigDataProc callback method, a callback that begins the signature gathering process:

	Your plugin interacts with the user, and allows the user to cancel if they want to do so.

	Your plugin acquires the signature itself in a method-specific way. All information is saved in memory, without altering the document itself.

	If dsNewSigData does not cancel, DigSig prepares the document for saving. First, it calls dsUnValidateSig on every signature in the document to put any overprinting or underprinting in canonical form. It then counts how many pages and fields have changed since any prior signature and records this.

	For a first signature, the digital signature plugin displays the Save As dialog box, allowing the user to select file name, optimization, and encryption. The user may cancel. Other than fatal errors, such as out-of-disk-space, this is the last chance to stop the process.

Saving a document¶

The following steps describe how the digital signature plugin saves a document:

	The digital signature plugin invokes your DSCommitSignProc callback method to update the document with the actual signature. Your DSCommitSignProc callback must perform the following tasks:

	Create the signature dictionary, possibly using information in the signature field /DV dictionary, perhaps using the /ByteRange and /Contents keys.

	Point /V in the signature field dictionary to this. Then create the /AP /N value in the signature annotation dictionary, using a method-specific visible representation of the signature, including a symbol signifying “unvalidated signature.”

	Optionally allocate dynamic storage for a marked array, an array of marked COS objects that it cares about.

	Return a marked array that includes at least the /ByteRange and /Contents value objects.

	The digital signature plugin inserts the /Changes array from step 1.

	The digital signature plugin saves the PDF document to a file. For each Cos object in the marked array, DigSig records the object’s byte offset and length in the file as written. The saved file may have objects encrypted by the Acrobat standard encryption handler, if the user so chooses.

	The first time a document is signed, the digital signature plugin may rename the file and may invoke the Optimizer, Linearizer, and Garbage Collector. Upon return from the save, all Cos objects are invalid, including those in the marked array.

All PD-level objects except the PDDoc are invalid. Signing methods must not depend on saving any such state between dsCommitSign and dsFinishSign. In particular, the byte offsets and lengths in the marked array are valid upon entry to doSign, but the Cos objects are not. The order of entries is unchanged, however, these Cos objects will be rewritten as CosNull before invoking dsFinishSign.

Finishing the process¶

The following describes how the digital signature plugin finishes the process of a signing a document:

	Invokes dsFinishSign, passing back in the marked array. Your DSFinishSignProc callback method must perform the following tasks:

	Calculate the /ByteRange that it desires, using the byte offsets and lengths in the marked array.

	Overwrite the marked /ByteRange value in the saved file, using the DigSigOverwriteIntArray or DigSigOverwriteBytes callback.

	Overwrite any other marked Cos objects it wants to.

	Calculate any document digest that it desires, using the DigSigFileGetEOF, DigSigFileSetPos, and DigSigFileRead callbacks; or it may use the DigSigMD5ByteRange callback.

	Obscure or encrypt this digest in a method-specific way.

	Overwrite the marked /Contents value in the saved file, using DigSigOverwriteHexstring or DigSigOverwriteBytes.

	Optionally delete dynamic storage for the marked array returned by the plugin.

	Invokes dsFreeSigData, which may free up any remaining storage.

Revalidating signatures¶

If the user reopens the file, the signatures must be validated. If the user asks to validate one or more signature fields, the digital signature plugin sequences through them one at a time. Your DSValidateSignProc callback method must perform the following tasks:

	Recalculate any document digest that it desires, using the DigSigFileGetEOF, DigSigFileSetPos, and DigSigFileRead callbacks; or it may use the DigSigMD5ByteRange callback.

	Compare this result to the stored one, and do any other method-specific checks it desires.

	Optionally do a validation against some stored (network) registry.

	Update the /AP /N value in the signature annotation dictionary to show doublechecked/pass/fail symbol.

	Return doublechecked/pass/fail.

The user may open more than one document at a time, and may switch between open documents.

Additional available callbacks¶

The user may ask to show a signature panel containing summary information for each signature in an open document. If multiple documents are open, there may be multiple panels, or a single panel may be repainted as the user switches between documents. DigSig manages updating the panel(s), but may call the respective method plugin for each signature to get information to display on the panel. For each signature, the signature panel has two levels of detail:[Same comment as on page 15 about the following not being a sequential list.]

	CLOSED displays a doublechecked/pass/fail/unknown/blank icon and a line of text for each signature field in the document. The default text is the name of the person signing and the date and time of signing, displayed in a language-independent way.

	The digital signature plugin calls dsGetValidState to choose which icon to show.

	OPEN displays an icon and line of text for each signature, then indented lines of further text, currently consisting of the name of the signer, date and time of signing, location of signing, reason for signing, and signing method.

	The digital signature calls dsGetValidState to choose which icon to show.

	Your plugin may update the signature panel for a document asynchronously (it may be doing validation as a background or idle-loop task). To do this, use the DigSigUpdatePanel callback.

Additional plugin support¶

Whenever a signature is created or verified, the plugin may optionally alter the appearance of the signature in the document, for the purpose of displaying or printing. For example, it could change an overprinted question mark on an unverified signature to an underprinted logo for a verified signature. To help with this, DigSig provides an HFT callback DigSigGetStdXObj that returns an XObject for a blank appearance, a question mark, or a cross. These are suitable as targets of the Do operator in a signature’s appearance stream.

To avoid saving a signature to a file with an appearance of valid (rather than unvalidated), just before each file save, DigSig loops through all the signature fields and calls the specific method’s dsUnValidateSig entry. This routine restores the signature’s appearance to the unvalidated state.

The AcroForms Widget Annot handler calls into DigSig using four entries. These calls all reflect user actions taken in the document view, not the Signatures panel view.

When the user selects an annotation by tabbing to it or by clicking it with the mouse, and that annotation is for a signature field, AcroForms calls DigSigDraw. If the annotation is selected, then bIsSelected is true. When the user tabs to a signature annotation and activates it by hitting the spacebar or enter key, this is equivalent to a left mouse click.

AcroForms calls DigSigKeyDown. The parameters parallel those of AVAnnotHandlerDoKeyDownProc. When the user left-clicks inside a signature annotation, AcroForms calls DigSigClick. The parameters parallel those of DoClickProcType.

When the user right-clicks inside a signature annotation, AcroForms calls DigSigRightClick.

Rollback support¶

There is a constraint on the values in the /ByteRange array. This constraint allows DigSig to implement rollbacks prior to signatures.

The largest offset + length value in the /ByteRange array for a given signature must be equal to the length of the PDF file containing that signature; that is, it must equal offset + 1 of the “F” in the %%EOF at the end of the file.

In addition, the following constraints also apply:

	All offsets must be in the range 0..2147483647.

	All lengths must be in the range 1..2147483647.

	Offset[n+1] must be strictly greater than offset[n] + length[n].

Forms extended API¶

The Acrobat Forms plugin exports its own Host Function Table (HFT), whose methods can be used by other plugins. To use the Acrobat Forms plugin’s HFT, a plugin must:

	Include the FormsHFT.h header file (which includes AF_ExpT.h and AF_Sel.h).

	Import the HFT using the ASExtensionMgrGetHFT method. A convenient way to perform this task is to use the Init_AcroFormHFT macro defined in FORMSHFT.H.

#define Init_AcroFormHFT
 ASExtensionMgrGetHFT(ASAtomFromString(AcroFormHFT_NAME),
 AcroFormHFT_LATEST_VERSION)

	Assign the HFT returned by this call to a plugin-defined global variable named gAcroFormHFT.

Data may be imported and exported into Acrobat Forms in forms data format (FDF). FDF is used to submit form data to a server, as well as to receive the response and incorporate it into a form. FDF is based on PDF and uses the same syntax and set of basic object types as PDF. It also has the same file structure, except that the cross-reference table is optional. See the PDF Reference. for more information about the structure of a PDF document.

For information about the APIs included in the Forms extended API, see the Acrobat and PDF Library API Reference.

Weblink extended API¶

A link in a PDF document that references a URL is referred to as a Weblink.

The Acrobat Weblink plugin exports its own Host Function Table (HFT), whose methods can be used by other plugins. The HFT’s name is defined in the WLHFTNAME macro, and its version number is WEB_LINK_HFT_LATEST_VERSION.

To use the Weblink plugin’s HFT, a plugin must include the header file WeblinkHFT.h. The plugin must also import the HFT using ASExtensionMgrGetHFT and assign the HFT returned by this call to a plugin-defined global variable named gWLHFT. The easiest way to do this is to use the Init_gWLHFT macro defined in the header files.

For information about the APIs included in the Weblink extended API, see the Acrobat and PDF Library API Reference.

Weblink services¶

The Weblink plugin provides the following services:

	Maintenance of links (editing and storage of URLs associated with links, and so on)

	Manipulation of links (appropriate cursor changes and dynamic display of URL destinations)

	Selection of the external web browser

	Manipulation of the Adobe standard web driver

	Basic progress status services (progress monitor, wait cursor, and so on)

The Weblink plugin includes a standard driver, known as the Adobe Standard Web Driver. It allows support for transport mechanisms or web browsers to be added at a later time.

The Standard Web Driver uses DDE messages and Apple events to communicate with a web browser. It supports a protocol that consists of a suite of verbs—some going to and some coming from—the web browser. These verb definitions are provided so that web browsers can implement this protocol to be compatible with the Adobe standard web driver. Each verb is specified in terms of the platform-specific implementation: DDE for Windows and Apple events for Mac OS. The standard driver’s use of each verb is also described. Browsers that wish to use their own protocol may do so by writing a custom driver.

The Weblink plugin communications software in the Weblink driver is independent of the Acrobat mechanism for handling links (the PDF implementation of URLs). This separation improves portability by isolating the highly platform-specific interapplication communication messages. Even on a given platform, there is no standard among web browsers for handling interapplication communication, and the actual transport mechanism may vary over time. By separating out the transport code, the Weblink plugin remains portable across platforms, across different vendors’ implementations of web browsers, and across different versions of web browsers from the same vendor.

Writing a custom driver¶

A driver is an Acrobat core plugin, written like any other plugin. A driver must register itself with the Weblink plugin during the import, replace, and register phases of the plugin initialization process by invoking RegisterWebDriver. You pass this method a WebDriverVector structure containing a version number and six pointers to functions that your driver provides to handle web-browser-specific tasks.

A driver is responsible for performing the following tasks:

	Connecting with external services (either directly or through an external application)

	Communicating with external services

	Associating a base URL with a given document

	Identifying external browsers that are compatible with the driver

In a typical session, the following actions can occur:[Same question as page 15. Is the following numbered list sequential?]

	The user starts Acrobat.

	The Weblink plugin publishes a Host Function Table (HFT) during the exportHFTsCallback phase of initialization.

	During the importReplaceAndRegisterCallback phase, all drivers in turn invoke RegisterWebDriver in the Weblink plugin’s HFT to register themselves as available.

	During the initCallback phase, the Weblink plugin, if possible, selects an appropriate driver and notifies it that it is the active driver.

	The user opens a PDF document with Weblinks and clicks a Weblink.

	The Weblink plugin extracts the URL from the link and passes it to the driver.

	The driver packages the URL into an interapplication communication (IAC) message and sends it to an external web browser (launching the browser application, if necessary).

	The external web browser brings itself to the foreground unless the URL’s MIME type is application/pdf.

	The web browser retrieves the document and packages an IAC message.

	The driver accepts the IAC message from the browser and opens the PDF document by using the AVDocOpenFromFile method. The driver should associate the URL with the document.

	To resolve relative links, Weblink prepends either a base URL with the document, or if there is no base URL, the appropriate portion of the URL of the document the link is in.

Spelling extended API¶

Acrobat provides a Spelling plugin, which exports a Host Function Table (HFT) implementing a spell-check API for use by plugin developers.

To use the spelling HFT, a plugin must include the header file SpellerHFT.h, which includes Speller_Sel.h.

The following is a typical sequence of calls made by a plugin using the Spelling HFT. During its importReplaceAndRegister callback, the plugin should:

	Import the HFT, using ASExtensionMgrGetHFT, and assign the HFT returned by this call to a plugin-defined global variable named gSpellerHFT. The easiest way to do this is to use the Init_SpellerHFT macro defined in SpellerHFT.h.

	Allocate and initialize one SpellCheckParam block for each spelling domain the client will add.

	Add zero or more domains using the SpellAddDomain call.

During execution, a plugin performs the following tasks:

	Respond to the following callbacks for each domain:

	SCEnableProc is called by Spelling to ask if this domain has anything that needs to be checked

	SCGetTextProc is called to get a text buffer to be checked.

	SCCompletionProc is called after the user has modified the text buffer.

	The client may call other Spelling HFT services during execution even if it did not add a domain.

During its unloadCallback, a plugin should perform the following tasks:

	Remove all spelling domains added during initialization using the SpellRemoveDomain method.

	Free all memory associated with SpellCheckParam block(s) (scInBuffer, scOutBuffer, and scClientData).

	Free the SpellCheckParam block(s).

Several of the Spelling API methods (SpellCheck, SpellCheckText, and SpellCheckWord) take input strings as parameters, and several methods return strings as output parameters.

Input strings are either big-endian Unicode strings with the bytes 0xFE 0xFF prepended, or strings with PDFDocEncoding. In either case a string is expected to have the appropriate null-termination. If a string is UCS-2 it may have embedded language and country information.

Output text is in big-endian UCS-2 format with the bytes 0xFE 0xFF prepended. This string can be converted to a host encoded string by using the ASTextFromPDText and ASTextGetEncodedCopy methods.

char **altArray = NULL;
 ASInt32 altCount = 0;
 ASBool status = SpellCheckWord(acd, cWord, NULL, 0, &altArray, &altCount);
 if (altCount) {
 ASText ast = ASTextFromPDText(altArray[1]);
 char* altWord = ASTextGetEncodedCopy(ast, (ASHostEncoding)
 PDGetHostEncoding());
 }

AcroColor extended API¶

AcroColor is an HFT that allows you to access the Adobe Color Engine (ACE), which provides color profile management for Acrobat and for other Adobe applications. Plugins can import the AcroColor HFT to use the color management methods.

The AcroColor extended API is the only extended API that is not installed as a plugin. It is part of the Acrobat core, but is considered an extended API. The AcroColor APIs, unlike the other extended APIs, can be used by the PDF Library.

The AcroColor HFT encapsulates color management into a set of convenient objects and functions. The objects represent basic color-management entities:

	The color management engine, or ACE, which is used by the underlying software to control a color management session.

	Device-specific ICC color profiles, which provide specific mapping between standard color specifications and specific values for particular output devices that produce those colors. Additional support objects include profile lists.

	Color spaces for the different kinds of color production (such as grayscale, RGB, and CMYK). Additional support objects include calibrated color spaces for standard color specifications.

	Transformations between profiles or color spaces.

	Color settings, as listed in the Acrobat Preferences. Color settings files contain, for instance, references to color profiles, and apply across Adobe products. Additional support objects include a string object and preset lists of settings.

You can create an ICC color profile from available data (ACMakeBufferProfile), or use profiles that are installed on the system (ACGetWorkingSpaceProfile), or stored in color settings files (ACGetSettingsProfile).

You can extract information directly from profiles, such as a string to use in the UI (ACProfileDescription). However, the most important thing you do with color profiles is use them to make transformations (ACMakeColorTransform). You can then apply it (ACApplyTransform) to transform a set of image data from one profile to another, so that it appears with the same colors on a different display device.

AcroColor objects are reference-counted. Each object type has an unreference method (such as ACUnReferenceProfile). Whenever you create one of these objects, you are responsible for using the corresponding unreference method to release it when you are finished with it.

The following diagram shows objects and their relationships.

Color conversion operations¶

The Color Conversion API has been extended in Acrobat 8.0 to include new APIs that enable you to add color conversion operations to your plugin or PDF Library applications. By using this extended API, you can convert a page based on a list of conversion actions. Each conversion action contains a set of matching fields (object attribute or type, color space, rendering intent), what the action should do if an object matches the matching fields, and conversion parameters (rendering intent, black point compensation, and target color space).

The list of conversion actions is evaluated in order. For example, a list could contain the following actions:

	Convert JPEG images to CMYK.

	Convert all images to CMYK.

	Convert line art using saturation intent.

Object attributes¶

An object located within a PDF document can contain the following attributes:

	Image (for example, JPEG/JPEG2K, lossless)

	Line art (for example, fill or stroke)

	Text

	Smooth shade

	Transparency

	Overprinting

Color space attributes¶

The following list describes color space attributes:

	Color space (RGB, CMYK, grayscale, Lab)

	Calibrated

	Device (for example, not calibrated)

	Special (Separation/DeviceN)

	Indexed

	NChannel

	Alternate color space

	Base of indexed color space

Conversion actions¶

The following is a list of conversion actions:

	Convert to a color space

	Preserve the object as it is

	Alias a separation to a different one

	Decalibrate the object, if possible (for example, replace calibrated spaces with device). This does not work with Lab color spaces.

	Downconvert from NChannel to DeviceN

Action modifiers¶

The following action modifiers apply if the action converts the object:

	Render Intent:

	Override the color conversion with one of the ICC intents

	Use document intent

	Preserve black

	Black point compensation: on or off

	Embed or do not embed the target profile if the object was converted

Ink aliasing¶

Along with the list of actions, there is a list of inks, such as specific colorants, which can control whether a particular ink is converted to process or aliased to another colorant.

Data structures¶

The AcroColor extended API contains methods, such as PDDocColorConvertPage, that accept data structure instances as arguments. These data structures consist of a list of action records and a list of inks. Each action record specifies attributes, color spaces, and rendering intent, along with an action. That is, what to do with the particular object if a match is located. The ink list defines ink aliasing or conversion to process for particular named colorants.

The following list specifies the data structures that you use to work with the AcroColor extended API:

PDColorConvertAction: Defines a color conversion action for a combination of attributes, color space, and rendering intent.

PDColorConvertParams: Represents a list of actions that will be performed.

For information about these data structures and their data members, see the Acrobat and PDF Library API Reference.

Data enum values¶

Some data structure members require enum values as values. For example, the mAction member, that belongs to the PDColorConvertAction data structure, requires a PDColorConvertActionType value. The following list specifies the data enum values that you use to work with the AcroColor extended API:

PDColorConvertObjectAttributeFlags: Specifies object attributes.

PDColorConvertSpaceTypeFlags: Specifies color space attributes.

PDColorConvertActionType: Specifies action types that occur when an object is matched.

For information about these enum values, see the Acrobat and PDF Library API Reference.

Converting a document to RGB¶

You can use the AcroColor extended API to convert a document to RGB by performing the following steps:

	Create an instance of the PDColorConvertParams data structure.

	Create an AC_Profile object. This object is used to assign a value to the mConvertProfile data member that belongs to the PDColorConvertAction data structure. When you are done with this object, invoke the ACUnReferenceProfile method to release it from memory.

	Invoke the ACProfileFromCode method and pass the following arguments:

	The address of the AC_Profile object.

	The value AC_Profile_AppleRGB (this is an AC_ProfileCode value)

	Create a PDColorConvertActionType variable and assign it the value kColorConvConvert. This variable is used to assign a value to the mAction data member that belongs to the PDColorConvertAction data structure.

	Create an instance of the PDColorConvertAction data structure and assign the following values to its data members:

mMatchAttributesAny: Assign -1

mMatchSpaceTypeAny: Assign -1

mMatchIntent: Assign AC_UseProfileIntent (an AC_RenderIntent value)

mConvertProfile: Assign the AC_Profile object

mEmbed: Assign true

mPreserveBlack: Assign false

mUseBlackPointCompensation: Assign true

mAction: Assign the PDColorConvertActionType variable

	Assign the following values to the PDColorConvertParams data members:

mActions: Assign the instance of the PDColorConvertAction data structure to this data member

mNumActions: Assign 1

mInks: Assign NULL

mNumInks: Assign 0

	Invoke the PDDocColorConvertPage method and pass the following arguments:

	A PDDoc object that represents the document in which to convert a page. (See Creating a PDDoc object.)

	The instance of the PDColorConvertParams data structure that describes how color conversions are performed.

	An ASInt32 value that specifies the page number to convert. This value is a 0-based index.

	An ASProgressMonitor object that represents the progress monitor callback. You can pass NULL if you do not want to provide a progress monitor callback.

	The data element to pass to the progress monitor callback. You can pass NULL if you do not want to provide a progress monitor callback.

	A PDColorConvertReportProc object that represents the reporting callback. You can pass 0 to indicate that there is no reporting callback.

	The data element to pass to the reporting callback. You can pass NULL if you do not want to provide a reporting callback.

	The address of an ASBool variable. If a conversion is made to the specified page, true is assigned.

The following code example converts a page in a PDF document to Apple RGB.

 //Define the color parameters
PDColorConvertParams myColorParams;

 //Define the color actions
PDColorConvertAction myAction;

 //Declare an AC_Profile object
AC_Profile prof;

 //Define AppleRGB as the profile to use
ACProfileFromCode(&prof, AC_Profile_AppleRGB);

 //Declare a PDColorConvertActionType variable
PDColorConvertActionType actionType = kColorConvConvert;

 //Populate the PDColorConvertAction data members
myAction->mMatchAttributesAny = -1;
myAction->mMatchSpaceTypeAny = -1;
myAction->mMatchIntent= AC_UseProfileIntent;
myAction->mConvertProfile=prof ;
myAction->mEmbed = true;
myAction->mPreserveBlack = false;
myAction->mUseBlackPointCompensation= true;
myAction->mAction = actionType;

 //Populate the PDColorConvertParams pointer
myColorParams->mActions=myAction;
myColorParams->mNumActions=1;
myColorParams->mInks= NULL;
myColorParams->mNumInks=0;

 //Convert the second page to Apple RGB
PDDocColorConvertPage (theDoc, myColorParams, 1, NULL, NULL,0,NULL,false);

 //Deallocate the AC_Profile object
ACUnReferenceProfile(prof);

For information about the APIs included in the AcroColor extended API, see the Acrobat and PDF Library API Reference.

PDF Optimizer API¶

PDF Optimizer API is part of the AV layer and is exported using the AcroView HFT. You use this API to work with the PDF Optimizer tool, which optimizes an active PDF document and then saves it using the PDDocSaveWithParams method to a specified location. The PDF Optimizer API is available with Acrobat Pro and Acrobat Pro Extended, but not with Acrobat Standard or with Adobe Reader.

Using this API, you can reduce the size of bulky PDF files and run Distiller optimizations on PDF files without having to print them. Avoiding the print route enables you to retain bookmarks, tags, links, and so on. You can also make PDF files compatible with specific versions of Acrobat.

You can invoke the AVDocSaveOptimized method to run the PDF Optimizer tool on a specified PDF document. An optimized document is created using the settings specified in the PDFOptParams structure. The optimized document is saved to disk at the location specified in the parameter’s structure. If the operation is successful, the active document is closed and the optimized document is opened for viewing. If the operation fails, the active document remains open.

The AVDoc object passed to the proc should not be dirty. PDF Optimizer is unavailable in external windows like those of a web browser, so the AVDoc object should not be from a document open in an external window. The document should not be of a version greater than the default PDF version of the Acrobat application.

When you invoke the AVDocSaveOptimized method, pass the following arguments:

	An AVDoc object that represents the PDF document to optimize.

	An instance of a PDFOptParams data structure. (See the Acrobat and PDF Library API Reference.)

 © Copyright 2022, Adobe Inc..

 Last updated on May 02, 2023.

