

	
	 	

 Acrobat and PDFL Developer Guides

 Acrobat-PDFL SDK Documentation

 	Acrobat and PDFL SDK Documentation	Master search and TOC
	Documentation
	Related specifications	PDF Reference
	Other formats
	12.x Legacy docs
	11.x and earlier documentation

	Acrobat-PDFL SDK: Overview	Acrobat-PDFL SDK: Overview	Developer support
	Licensing and distribution	Acrobat Reader
	Additional resources
	Technical and licensing limitations

	Samples provided with the Acrobat SDK
	Developing for Acrobat Reader	Acrobat vs. Reader
	Acrobat Reader plug-in guidelines
	Reader enabled plugins

	SDK technologies and options	JavaScript
	Plug-ins
	JavaScript vs. plugins: pros and cons
	Interapplication communication
	Viewing PDF documents from an external application
	Controlling Acrobat from an external application
	Adobe PDF Library

	Sandbox Broker Extensibility	Extending broker APIs at run time
	Components	Plugin (PI)
	Sandbox process
	Broker process (The broker process running with full rights)
	Plugin broker (The plugin broker process that extends the broker APIs at runtime)
	SandboxHFT (Public HFT provided by sandbox for broker extensibility)
	IPC channel between plugin and plugin broker, 1->6->4
	simple-ipc-lib and SandboxPISDK
	Building a plug-in
	Building a plugin’s broker process

	Handshake between plugin and plugin broker
	Implement CrossCalls (make calls from plug-in to plug-in’s broker process)	Changes required in the plugin (client)
	Changes required in the plugin’s broker (server)

	PDF File Creation	Creating PDF files from an authoring application	Acrobat Distiller
	Automated creation of PDF documents from Windows
	Automatic generation of advanced Acrobat features
	Attaching a native document to a PDF file
	Batch processing with Distiller
	Tagged PDF documents

	Creating PDF files using plug-ins or JavaScript	Empty PDF files
	PDF files from multiple files

	Creating PDF files without using Acrobat

	Working with PDF Features	Navigation in PDF documents	Bookmarks
	Thumbnails
	Links
	Actions for special effects

	PDF page manipulation	Page content
	Document logical structure
	Other ways of modifying PDF documents

	Watermarks
	Spell-checking
	Multimedia
	Printing PDF files
	Embedded fonts

	User Interface Modifications	Menu items and menus	Menu items
	Menus

	Toolbars	Items on a toolbar
	Toolbar creation

	Customization of Acrobat Help	About dialog box and splash screen
	Plug-in help files

	Annotations and Online Collaboration	About annotations	Annotations and JavaScript
	Annotations with plug-ins or IAC

	New annotation types

	XML and the Acrobat SDK	Adobe XML architecture	XML forms model
	XML templates
	Extensible Metadata Platform

	SOAP and web services
	Conversion of PDF documents to XML format
	XML-based information

	Forms and the Acrobat SDK	Workflows for forms
	About XML forms
	About Acrobat forms	Forms API
	OLE automation

	Metadata, Accessibility, and PDF Layers	Metadata	Extensible Metadata Platform (XMP)
	Adobe XMP Toolkit

	Accessibility
	PDF layers	Creation of layered PDF files
	What you can do with layers

	Searching and Indexing	Search plug-in
	Indexes and the Catalog plug-in

	Frequently Asked Questions	Forms	What are the requirements for using Acrobat forms?
	What is the FDF Toolkit?

	PDF documents	What ActiveX solutions are available?
	Visual Basic .NET and Visual C# .NET
	What API methods are available to modify PDF documents?
	Can I modify PDFs without a C programming background?
	How can I extract text?
	How can I display a PDF in an external application window?
	Using Acrobat to view PDFs in your own application
	Are multibyte font PDF documents supported by the Acrobat SDK?
	How are security and encryption provided in PDFs?

	Full-text search	What tools are available with Acrobat for full-text search?
	What tools are available for extracting and highlighting text?
	How do I communicate with the Acrobat Search plug-in?
	How do I create custom DocInfo fields for searching?

	How do I use the Windows command line?
	How can I customize the Acrobat installer?

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Plugin Development	Acrobat-PDFL SDK: Developing Plugins	About plugins
	About the Acrobat core API	Acrobat Viewer layer
	Portable Document layer
	Acrobat Support layer
	Cos layer
	Platform-specific methods

	Acrobat core API objects	File object interrelationships
	Document object interrelationships

	Acrobat core API methods
	Data types	Scalar types
	Simple types
	Complex types
	Opaque types
	Cos types

	About PDF Library and plugin applications	Manipulating Acrobat and Adobe Reader
	Displaying a PDF document in an external window
	Indexed searching
	Modifying file access
	Creating new annotation types
	Dynamically adding text to PDF documents

	Understanding your target application	Rights-enabled PDF documents
	Adobe Reader plugins

	Registering plugins for use by the plugin finder	PDF dictionary extensions

	Understanding Plugins	Plugin loading and initialization	Handshaking
	Exporting HFTs
	Importing HFTs and registering for notifications
	Initialization
	Unloading
	Summarizing a plugin’s life cycle

	Using callback functions
	Notifications
	Handling events	Mouse clicks
	Adjust cursor
	Key presses

	Using plugin prefixes	Obtaining a developer PDF name prefix
	Using a developer prefix

	Modifying the Acrobat or Adobe Reader user interface	Adding or removing menus and menu items
	Modifying toolbars
	Controlling the About box and splash screen
	Creating help files
	User interface guidelines

	Acquiring and releasing objects
	Debugging plugins
	Page view layers
	Minimizing screen redrawing
	Storing private data in PDF files
	Exporting data from PDF document objects

	Creating Plugin and PDF Library Applications	Working with platform-specific techniques	About platform-dependent data
	Portability techniques
	Windows techniques
	Mac OS techniques

	Creating a sample plugin	Including Acrobat SDK library files
	Adding the PIMain source file
	Adding application logic
	Compiling and building your plugin

	Creating a sample PDF Library application	Contents of the PDF Library SDK
	Developing applications with the Adobe PDF Library
	Initialization and termination
	Multithreading

	Upgrading existing plugins	Detecting supported APIs

	Migrating PDFL apps to Xcode

	Inserting Text into PDF Documents	Creating a new PDF document
	Creating a new page
	Creating a container
	Acquiring fonts
	Creating a PDEGraphicState object
	Creating an ASFixedMatrix object
	Inserting text
	Saving the PDF document
	Examining a PDFL app source file

	Working with Documents and Files	Opening PDF documents
	Opening a PDF in an external window	Creating a Window
	Defining the parameters for an external window
	Creating a handler for an external window
	Displaying an open dialog box
	Displaying a PDF in a window

	Determining the PDF version	PDF version
	PDF version extensions
	Setting the extension level of a document
	Getting the extension level of a document

	Bridging core API layers	Creating a PDDoc object
	Creating a PDDoc object for an open PDF
	Accessing non-PDF files

	Printing documents
	Working with the PDF/X format

	Creating Menus and Menu Commands	About menus	About AVmenubar typedefs
	About AVMenu typedefs
	About AVMenuItem typedefs

	Adding menu commands to menus	Adding a menu command to an existing menu
	Adding a menu command to a new menu

	Creating menu callback functions
	Determining if a menu item can be executed

	Creating Toolbars and Buttons	About toolbars	About AVToolBar typedefs
	About AVToolButton typedefs

	Retrieving toolbars
	Creating toolbar buttons	Setting help text for a button
	Setting label text
	Creating a sub-menu for a button

	Retrieving existing toolbar buttons
	Attaching a button to a toolbar
	Exposing a button in a web browser
	Removing a button from a toolbar
	Creating toolbar button callback functions

	Creating Annotations	Working with text annotations	Creating text annotations
	Retrieving existing annotations
	Modifying text annotations

	Working with redaction annotations	Creating a redaction annotation
	Modifying an existing redaction annotation
	Applying redaction annotations (removing redacted content)

	Working with Bookmarks	About bookmarks
	Creating bookmarks	Defining bookmark actions
	Removing bookmark actions
	Opening and closing bookmarks

	Retrieving bookmarks	Retrieving the root bookmark
	Retrieving a specific bookmark
	Retrieving all bookmarks

	Deleting bookmarks

	Working with Page Views and Contents	About page coordinates
	About page views
	Displaying page views
	Modifying page contents	Creating a PDEContent object
	Accessing page contents
	Determining page element types
	Modifying text elements

	Working with Words	About searching for words	About PDWord typedefs
	About PDWordFinder typedefs

	Creating a PDWordFinder object
	Extracting and displaying words
	Highlighting words

	Creating Handlers	About handlers
	Action handlers
	Annotation handlers
	AVCommand handlers	Creating an AVCommand handler
	Invoking AVCommands
	Configuring AVCommands
	Running commands
	Exposing AVCommands to the batch framework

	File format conversion handlers
	File specification handlers
	Selection servers
	Tool callbacks
	Window handlers
	File systems
	Progress monitors
	Transition handlers
	Adding message handling

	Registering for Event Notifications	Registering event notifications
	Unregistering event notifications

	Working with Document Security	About document security
	About security handlers	Adding a security handler
	Opening a secured file
	Saving a secured file

	Setting security for a document	Saving a file with an encryption dictionary
	Opening an encrypted file

	Working with Unicode Paths	About Unicode paths
	Creating Unicode file path application logic
	Retrieving Unicode path values	Creating an ASFileSys object
	Creating an ASFileSys object that supports Unicode paths

	Working with Host Function Tables	About host function tables
	Exporting host function tables	Creating HFT methods
	Creating HFT method definitions
	Creating HFT callback functions
	Creating new Host Function Tables
	Examining HFT header and source files

	Importing an existing HFT
	Invoking HFT methods
	Replacing HFT methods
	Migrating non-HFT PDF Library applications to HFT applications

	Working with Cos Objects	About Cos objects	About direct and indirect objects
	About Cos object types

	Working with Cos strings	Creating Cos strings
	Retrieving the string value

	Working with Cos arrays	Creating Cos arrays
	Retrieving Cos array values

	Working with Cos dictionaries	Creating Cos dictionaries
	Retrieving values from a Cos dictionary
	Querying a Cos dictionary for a key

	Working with Cos names	Creating Cos names
	Retrieving the value of a name object

	Working with Cos streams	Creating Cos streams
	Populating a PDF with a content stream

	Working with 3D Annotations	Creating 3D annotations
	Adding 3D data to an annotation	Creating the 3D annotation dictionary entries
	Specifying the 3D stream
	Setting the default view
	Setting the annotation appearance
	Setting the activation dictionary

	Parsing and Creating PRC Files	Working with the Acrobat 3D API	Versions
	Compatibility with different PRC format versions
	Compatibility between the Acrobat 3D Library and the Acrobat 3D API
	Requirements
	Data types, naming conventions, and character encoding
	Structured and recursive nature of PRC parsing

	Implementing external linking in your plugin	Implementing external linking

	Parsing a PRC file	Handling errors
	Copying the embedded PRC file to a separate file
	Initializing the Acrobat 3D API
	Parsing structure PRC entities
	Parsing tessellation PRC entities
	Parsing topology PRC entities
	Parsing PRC entities that specify graphics
	Parsing attributes that appear in an entity base
	Terminating the interface with the Acrobat 3D API

	Creating a PRC file that uses boundary representation	Error handling
	Creating a model file entity and exporting it to a physical file
	Creating structure PRC entities
	Creating representation item PRC entities
	Creating topology PRC entities
	Creating geometry PRC entities
	Defining root-level attributes for a PRC entity
	Creating a 3D annotation that references the PRC file

	Creating a tessellation entity for representing faceted objects	Create the tessellation base data
	Create the tessellation facet data

	Handling Exceptions	Creating exception handlers
	Returning a value from an exception handler
	Raising exceptions
	Exception handling scenarios	Using goto statements
	Using nested exception handlers
	Using register variables

	Working with Acrobat Extended APIs	Search extended API
	Catalog extended API
	PDF Consultant and Accessibility Checker extended API	Acrobat agents
	Reclassifying and revisiting
	Agent architecture
	How the consultant works
	Important issues for consultant development
	Importing the consultant HFTs into a plugin
	Creating and destroying consultants
	Registering agents with consultants
	Starting the consultant
	Consultant object type identification
	Creating an agent class
	Creating agent constructors
	Recognizing objects of interest
	Post processing stage

	Digital signature extended API	The PubSec layer
	Digital signature components
	Digital signature scenarios
	Initializing the digital signature plugin
	Understanding the process

	Forms extended API
	Weblink extended API	Weblink services
	Writing a custom driver

	Spelling extended API
	AcroColor extended API	Color conversion operations

	PDF Optimizer API

	Creating an Adobe Reader Plugin	Configuring preprocessor definitions
	Creating the public and private key pairs
	Enabling the plugin for Adobe Reader	Plugin to be Notarized on MacOS

	Troubleshooting an Adobe Reader plugin	Plugin appears to be ignored by Adobe Reader
	Adobe Reader error messages

	Reader Plugins	Reader enablement
	APIs available for Adobe Reader

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Interapplication Communication	Developing for Interapplication Communication	About the API object layers	Object reference syntax
	Objects in the Acrobat application layer
	Objects in the portable document layer

	Plugins for extending the IAC interfaces
	Developing for Acrobat Reader
	DDE messages
	Apple events

	Using OLE	OLE capabilities in Acrobat	On-screen rendering
	Remote control of Acrobat
	PDF browser controls

	Development environment considerations	Environment configuration
	Necessary C knowledge

	Using the Acrobat OLE interfaces	About the CAcro classes
	About the COleDispatchDriver class
	Using COleDispatchDriver objects and methods

	Using the JSObject interface	Adding a reference to the Acrobat type library
	Creating a simple application
	Working with annotations
	Spell-checking a document
	Tips for translating JavaScript to JSObject

	Other development topics	Synchronous messaging
	MDI applications
	Event handling in child windows
	Determining if an Acrobat application is running
	Exiting from an application

	Summary of OLE objects and methods

	Using DDE
	Using Apple Events
	OLE Automation	AcroExch.App	Methods
	CloseAllDocs
	Exit
	GetActiveDoc
	GetActiveTool
	GetAVDoc
	GetFrame
	GetInterface
	GetLanguage
	GetNumAVDocs
	GetPreferenceEx
	Hide
	Lock
	Minimize
	Maximize
	MenuItemExecute
	MenuItemIsEnabled
	MenuItemIsMarked
	MenuItemRemove
	Restore
	SetActiveTool
	SetFrame
	SetPreference
	SetPreferenceEx
	Show
	ToolButtonIsEnabled
	ToolButtonRemove
	Unlock
	UnlockEx

	AcroExch.AVDoc	Methods
	BringToFront
	ClearSelection
	Close
	FindText
	GetAVPageView
	GetFrame
	GetPDDoc
	GetTitle
	GetViewMode
	IsValid
	Maximize
	Open
	OpenInWindow
	OpenInWindowEx
	PrintPages
	PrintPagesEx
	PrintPagesSilent
	PrintPagesSilentEx
	SetFrame
	SetTextSelection
	SetTitle
	SetViewMode
	ShowTextSelect

	AcroExch.AVPageView	Methods
	DevicePointToPage
	DoGoBack
	DoGoForward
	GetAperture
	GetAVDoc
	GetDoc
	GetPage
	GetPageNum
	GetZoom
	GetZoomType
	Goto
	PointToDevice
	ReadPageDown
	ReadPageUp
	ScrollTo
	ZoomTo

	AcroExch.HiliteList	Add

	AcroExch.PDAnnot	Methods
	GetColor
	GetContents
	GetDate
	GetRect
	GetSubtype
	GetTitle
	IsEqual
	IsOpen
	IsValid
	Perform
	SetColor
	SetContents
	SetDate
	SetOpen
	SetRect
	SetTitle

	AcroExch.PDBookmark	Methods
	Destroy
	GetByTitle
	GetTitle
	IsValid
	Perform
	SetTitle

	AcroExch.PDDoc	Methods
	AcquirePage
	ClearFlags
	Close
	Create
	CreateTextSelect
	CreateThumbs
	CropPages
	DeletePages
	DeleteThumbs
	GetFileName
	GetFlags
	GetInfo
	GetInstanceID
	GetJSObject
	GetNumPages
	GetPageMode
	GetPermanentID
	InsertPages
	MovePage
	Open
	OpenAVDoc
	ReplacePages
	Save
	SetFlags
	SetInfo

	AcroExch.PDPage	Methods
	AddAnnot
	AddNewAnnot
	CopyToClipboard
	CreatePageHilite
	CreateWordHilite
	CropPage
	Draw
	DrawEx
	GetAnnot
	GetAnnotIndex
	GetDoc
	GetNumAnnots
	GetNumber
	GetRotate
	GetSize
	RemoveAnnot
	SetRotate

	AcroExch.PDTextSelect	Methods
	Destroy
	GetBoundingRect
	GetNumText
	GetPage
	GetText

	AcroExch.Point	X
	Y

	AcroExch.Rect	Bottom
	Left
	Right
	Top

	AcroExch.Time	Date
	Hour
	Millisecond
	Minute
	Month
	Second
	Year

	AxAcroPDFLib.AxAcroPDF	Methods
	GetVersions
	GoBackwardStack
	GoForwardStack
	GotoFirstPage
	GotoLastPage
	GotoNextPage
	GotoPreviousPage
	LoadFile
	Print
	PrintAll
	PrintAllFit
	PrintPages
	PrintPagesFit
	PrintWithDialog
	SetCurrentHighlight
	SetCurrentPage
	SetLayoutMode
	SetNamedDest
	SetPageMode
	SetShowScrollbars
	SetShowToolbar
	SetView
	SetViewRect
	SetViewScroll
	SetZoom
	SetZoomScroll
	Src

	DDE Messages	AppExit
	AppHide
	AppShow
	CloseAllDocs
	DocClose
	DocDeletePages
	DocFind
	DocGoTo
	DocGoToNameDest
	DocInsertPages
	DocOpen
	DocPageDown
	DocPageLeft
	DocPageRight
	DocPageUp
	DocPrint
	DocReplacePages
	DocSave
	DocSaveAs
	DocScrollTo
	DocSetViewMode
	DocZoomTo
	FileOpen
	FileOpenEx
	FilePrint
	FilePrintEx
	FilePrintSilent
	FilePrintSilentEx
	FilePrintTo
	FilePrintToEx
	FullMenus
	HideToolbar
	MenuitemExecute
	ShortMenus
	ShowToolbar

	Apple Event Objects and Apple Events	Objects	annotation
	application
	AVPageView
	bookmark
	conversion
	EPS Conversion
	Link Annotation
	menu
	menu item
	PDAnnot
	PDBookMark
	PDLinkAnnot
	PDPage
	PDTextAnnot
	PDF Window
	PostScript Conversion
	Text Annotation

	Required suite events	open
	print
	quit
	run

	Core suite events	close
	count
	delete
	exists
	get
	make
	move
	open
	quit
	save
	set

	Acrobat application events	bring to front
	clear selection
	close all docs
	create thumbs
	delete pages
	delete thumbs
	execute
	find next note
	find text
	get info
	go backward
	go forward
	goto
	goto next
	goto previous
	insert pages
	is toolbutton enabled
	maximize
	perform
	print pages
	read page down
	read page up
	remove toolbutton
	replace pages
	scroll
	select text
	set info
	zoom

	Miscellaneous events	do script

	Acrobat Catalog Plug-In	Catalog Windows messages
	Catalog DDE methods	AppExit
	AppFront
	FileBuild
	FileOpen
	FilePurge

	Acrobat Forms Plug-In	Forms plug-in OLE automation
	AFormApp
	Field	Methods
	PopulateListOrComboBox
	SetBackgroundColor
	SetBorderColor
	SetButtonCaption
	SetButtonIcon
	SetExportValues
	SetForegroundColor
	SetJavaScriptAction
	SetResetFormAction
	SetSubmitFormAction
	Properties
	Alignment
	BorderStyle
	BorderWidth
	ButtonLayout
	CalcOrderIndex
	CharLimit
	DefaultValue
	Editable
	Highlight
	IsHidden
	IsMultiline
	IsPassword
	IsReadOnly
	IsRequired
	IsTerminal
	Name
	NoViewFlag
	PrintFlag
	Style
	TextFont
	TextSize
	Type
	Value

	Fields	Methods
	Add
	AddDocJavascript
	ExecuteThisJavascript
	ExportAsFDF
	ExportAsHtml
	ImportAnFDF
	Remove
	Properties
	Count
	Item
	_NewEnum

	Acrobat Search Plug-in	Search plug-in using DDE	Simple query item
	Query item
	Query options
	Query language type constants
	Word option bit-flag constants
	Manipulating indexes through DDE
	Options
	Index operation selectors

	Search plug-in using Apple events	SearchAddIndex
	SearchCountIndexList
	SearchDoQuery
	Word options for Apple events
	SearchGetIndexByPath
	SearchGetIndexFlags
	SearchGetIndexList
	SearchGetIndexPath
	SearchGetIndexTitle
	SearchGetNthIndex
	SearchRemoveIndex
	SearchSetIndexFlags

	Search lists	Menu item names
	Toolbar button names

	Coordinate Systems	User space
	Device space

	Master Doc Search and TOC

	Acrobat-PDFL SDK: JavaScript APIs	Acrobat JavaScript API Reference	Version compatibility
	Overview
	Syntax	Method arguments
	Parameter help

	Paths	Safe path

	Privileged context
	Privileged versus non-privileged context
	User preferences
	Table quick key
	Domain names in code samples

	Changes Across Versions	Acrobat XI changes	Changes to PrintParams object

	Acrobat X changes	New JavaScript version
	Impact of Acrobat menu restructuring on JavaScript APIs
	New util method
	Changes to search object
	Changes to SearchExecuteQuery
	Function SearchIsLegacySearchAvailable deprecated
	Enhancements to PDFOptPDFVersion
	Enhancements to Doc object
	Signature support for Emerging PAdES ETSI ESI standard
	ADBC Support Removed from Documentation

	Acrobat 9.0 changes
	Acrobat 8.1 changes
	Acrobat 8.0 changes
	Acrobat 7.0.5 changes
	Acrobat 7.0 changes	Introduced in Acrobat 7.0
	Modified in Acrobat 7.0

	Acrobat 6.0 changes	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 changes	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe Reader 5.1

	JavaScript APIs	Alerter	Alerter methods

	AlternatePresentation	AlternatePresentation properties
	AlternatePresentation methods

	annotAttachment	annotAttachment properties

	Annotation	Annotation types
	Annotation properties
	Annotation methods

	AnnotRichMedia	AnnotRichMedia properties
	AnnotRichMedia methods

	Annot3D	Annot3D properties

	app	app properties
	app methods

	app.media	app.media properties
	app.media methods

	Bookmark	Bookmark properties
	Bookmark methods

	catalog	catalog properties
	catalog methods

	CatalogJob	CatalogJob properties

	Certificate	Certificate properties

	Collab	Collab methods

	color	Color arrays
	color properties
	color methods

	colorConvertAction	colorConvertAction properties

	Collection	Collection properties
	Collection methods

	collectionField	collectionField properties

	Column	Column properties

	ColumnInfo	ColumnInfo properties

	console	console methods

	Data	Data properties
	Data methods

	DataSourceInfo	DataSourceInfo properties

	dbg	dbg properties
	dbg methods

	Dialog	Dialog methods

	DirConnection	DirConnection properties
	DirConnection methods

	Directory	Directory properties
	Directory methods

	Embedded PDF	Embedded PDF properties
	Embedded PDF methods

	Error	Error properties
	Error methods

	event	Event type/name combinations
	Document Event Processing
	Form event processing
	Multimedia event processing
	event properties

	EventListener	EventListener methods

	Events	Events methods

	FDF	FDF properties
	FDF methods

	Field	Field versus widget attributes
	Field properties
	Field methods

	FullScreen	FullScreen properties

	global	Creating global properties
	Deleting global properties
	Global object security policy
	global methods

	HostContainer	HostContainer properties
	HostContainer methods

	Icon
	Icon Stream
	identity	identity properties

	Index	Index properties
	Index methods

	Link	Link properties
	Link methods

	Monitor	Monitor properties

	Monitors	Monitors methods

	Net	Net properties
	Net methods

	Net.HTTP	Net.HTTP methods

	OCG	OCG properties
	OCG methods
	PlayerInfo properties
	PlayerInfo methods

	PlayerInfoList	PlayerInfoList methods

	PlugIn	PlugIn properties

	PrintParams	PrintParams properties

	RDN
	ReadStream
	Rendition	Rendition properties
	Rendition methods

	Report	Report properties
	Report methods

	Row
	ScreenAnnot	ScreenAnnot properties
	ScreenAnnot methods

	search	search properties
	search methods

	security	security constants
	security properties
	security methods

	SecurityHandler	SecurityHandler properties
	SecurityHandler methods

	SecurityPolicy	SecurityPolicy properties

	SignatureInfo	SignatureInfo properties

	SOAP	SOAP properties
	SOAP methods

	Sound	Sound properties
	Sound methods

	Span	Span properties

	spell	spell properties
	spell methods

	TableInfo
	Template	Template properties
	Template methods

	Thermometer	Thermometer properties
	Thermometer methods

	this
	TTS	TTS properties
	TTS methods

	util	util methods

	XFA
	XMLData	XMLData methods

	Doc and Doc.Media APIs	Doc	Doc properties
	Doc methods

	Doc.media	Doc.media properties
	Doc.media methods

	Preflight APIs	Preflight	Preflight methods

	PreflightAuditTrail	PreflightAuditTrail properties

	PreflightProfile	PreflightProfile properties
	PreflightProfile methods

	PreflightResult	PreflightResult properties
	PreflightResult methods

	Media and Marker APIs	Marker	Marker properties

	Markers	Markers properties
	Markers methods

	MediaOffset	MediaOffset properties

	MediaPlayer	MediaPlayer properties
	MediaPlayer methods

	MediaReject	MediaReject properties

	MediaSelection	MediaSelection properties

	MediaSettings	MediaSettings properties

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Samples Guide	Acrobat SDK: Samples Guide	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer
	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard
	ShowPermissions

	Master Doc Search and TOC

	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer	Limitations

	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard	Limitations

	ShowPermissions

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Accessibility	Acrobat-PDFL SDK: Accessibility	Determining rendering order and logical order	Accessing documents and pages

	Processing inaccessible documents	Processing protected documents
	Processing empty documents
	Processing unavailable documents

	Handling event notifications	Retrieving an MSAA object for an event
	Retrieving a PDF DOM object for an event

	Reading PDF Files Through MSAA	Acrobat implementation of IAccessible objects
	IGetPDDomNode interface	get_PDDomNode

	ISelectText interface	selectText

	Identifying IAccessible objects in a document	get_accID

	IAccessible method summary
	Navigation and hierarchy	accNavigate
	get_accChild
	get_accChildCount
	get_accParent

	Descriptive properties and methods	accDoDefaultAction
	get_accDefaultAction
	get_accDescription
	get_accName
	get_accRole
	get_accState
	get_accValue

	Selection and focus	accSelect
	get_accFocus
	get_accSelection

	Spatial mapping	accLocation
	accHitTest

	IAccessible object types for PDF	PDF Document
	PDF Page
	PDF Protected Document
	Empty PDF Document
	PDF Structure Element
	PDF Content Element
	PDF Comment
	PDF Link
	PDF Text Form Field
	PDF Button Form Field
	PDF CheckBox Form Field
	PDF RadioButton Form Field
	PDF ComboBox Form Field
	PDF List Box Form Field
	PDF Digital Signature Form Field
	PDF Caret

	Reading PDF Files Through the DOM Interface	IPDDomNode data types	CPDDomNodeType
	PDDom_FontStyle
	FontInfoState
	DocState
	NodeRelationship

	IPDDomNode methods	Words and lines in text
	GetParent
	GetType
	GetChild
	GetChildCount
	GetName
	GetValue
	IsSame
	GetTextContent
	GetFontInfo
	GetLocation
	GetFromID
	GetIAccessible
	ScrollTo
	GetTextInLines

	IPDDomNodeExt methods	Navigate
	ScrollToEx
	SetFocus
	GetState
	GetIndex
	GetPageNum
	DoDefaultAction
	Relationship

	IPDDomDocument methods	SetCaret
	GetCaret
	NextFocusNode
	GetFocusNode
	SelectText
	GetTextSelection
	GetSelectionBounds
	GetDocInfo
	GoToPage

	IPDDomElement Methods	GetTagName
	GetStdName
	GetID
	GetAttribute

	IPDDomWord methods	LastWordOfLine

	IPDDomGroupInfo method	GetGroupPosition

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Batch Sequences	Acrobat- PDFL SDK: Using Batch Sequences	Creating and running a batch sequence	Create a batch sequence that sets the disclosed property to true:
	To select files:
	To run a batch sequence:

	Batch processing objects	Aborting a script
	Using the this object

	Global variables
	Beginning and ending a batch job
	Debugging and testing tips

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDF Creation Settings	Acrobat-PDFL SDK: PDF Creation Settings	Terminology
	Organization of settings files
	Namespaces	Common namespace
	Othernamespaces

	Predefined settings files	Where presets are installed
	System preset information

	Reading and writing settings files	Compatibility strategies
	How applications handle incorrect settings files

	How Distiller uses Adobe PDF settings	Distiller initialization
	How Distiller processes PostScript files
	Modifying settings during the job
	Using Distiller to combine PostScript files

	Using PDF Creation Settings	Using the image settings	Image compression settings
	Automatic compression
	Non-automatic compression
	Downsampling and subsampling images
	Setting compression of text, line art, and objects
	Distiller-only image settings

	Using the font settings
	Using the color conversion settings	Distiller color conversion settings
	Creative Suite color conversion settings
	Color settings interchange

	Using the advanced Adobe PDF settings	Relationship between setpagedevice keys and job ticket keys
	Relationship between PostScript comments and job ticket keys

	Using the standards settings	Using the compliance checking settings
	Using the PDF/X output intent settings
	Distiller examples

	Common PDF Settings	Settings descriptions
	General settings	AutoRotatePages
	Binding
	CompatibilityLevel
	CompressObjects
	CoreDistVersion
	Description
	DoThumbnails
	EndPage
	ExportLayers
	HWResolution
	ImageMemory
	Namespace
	Optimize
	OtherNamespaces
	PageSize
	StartPage

	Image settings
	Color image settings	AntiAliasColorImages
	AutoFilterColorImages
	ColorACSImageDict
	ColorImageAutoFilterStrategy
	ColorImageDepth
	ColorImageDict
	ColorImageDownsampleThreshold
	ColorImageDownsampleType
	ColorImageFilter
	ColorImageMinDownsampleDepth
	ColorImageMinResolution
	ColorImageMinResolutionPolicy
	ColorImageResolution
	ConvertImagesToIndexed
	CropColorImages
	DownsampleColorImages
	EncodeColorImages
	JPEG2000ColorACSImageDict
	JPEG2000ColorImageDict

	Grayscale image settings	AntiAliasGrayImages
	AutoFilterGrayImages
	CropGrayImages
	DownsampleGrayImages
	EncodeGrayImages
	GrayACSImageDict
	GrayImageAutoFilterStrategy
	GrayImageDepth
	GrayImageDict
	GrayImageDownsampleThreshold
	GrayImageDownsampleType
	GrayImageFilter
	GrayImageMinDownsampleDepth
	GrayImageMinResolution
	GrayImageMinResolutionPolicy
	GrayImageResolution
	JPEG2000GrayACSImageDict
	JPEG2000GrayImageDict

	Monochrome image settings	AntiAliasMonoImages
	CropMonoImages
	DownsampleMonoImages
	EncodeMonoImages
	MonoImageDepth
	MonoImageDict
	MonoImageDownsampleThreshold
	MonoImageDownsampleType
	MonoImageFilter
	MonoImageMinResolution
	MonoImageMinResolutionPolicy
	MonoImageResolution

	Page Compression Setting	CompressPages

	Font settings	AlwaysEmbed
	CannotEmbedFontPolicy
	EmbedAllFonts
	EmbedOpenType
	MaxSubsetPct
	NeverEmbed
	SubsetFonts

	Color conversion settings	CalCMYKProfile
	CalGrayProfile
	CalRGBProfile
	ColorConversionStrategy
	ColorSettingsFile
	DefaultRenderingIntent
	ParseICCProfilesInComments
	PreserveDICMYKValues
	PreserveHalftoneInfo
	sRGBProfile
	TransferFunctionInfo
	UCRandBGInfo

	Advanced Adobe PDF settings	AllowPSXObjects
	AllowTransparency
	ASCII85EncodePages
	AutoPositionEPSFiles
	CreateJDFFile
	CreateJobTicket
	DetectBlends
	DetectCurves
	DSCReportingLevel
	EmbedJobOptions
	EmitDSCWarnings
	LockDistillerParams
	OPM
	ParseDSCComments
	ParseDSCCommentsForDocInfo
	PassThroughJPEGImages
	PreserveCopyPage
	PreserveEPSInfo
	PreserveFlatness
	PreserveOPIComments
	PreserveOverprintSettings
	UsePrologue

	Standards settings	CheckCompliance
	PDFX1aCheck
	PDFX3Check
	PDFXBleedBoxToTrimBoxOffset
	PDFXCompliantPDFOnly
	PDFXNoTrimBoxError
	PDFXOutputCondition
	PDFXOutputConditionIdentifier
	PDFXOutputIntentProfile
	PDFXRegistryName
	PDFXSetBleedBoxToMediaBox
	PDFXTrapped
	PDFXTrimBoxtoMediaBoxOffset

	Other Namespaces	CreativeSuite namespace settings	AddBleedMarks
	AddColorBars
	AddCropMarks
	AddPageInfo
	AddRegMarks
	BleedOffset
	ConvertColors
	DestinationProfileName
	DestinationProfileSelector
	Downsample16BitImages
	FlattenerPreset
	GenerateStructure
	IncludeBookmarks
	IncludeHyperlinks
	IncludeInteractive
	IncludeLayers
	IncludeProfiles
	MarksOffset
	MarksWeight
	MultimediaHandling
	PageMarksFile
	PageMarksFileName
	PDFXOutputIntentProfileSelector
	PreserveEditing
	UntaggedCMYKHandling
	UntaggedRGBHandling
	UseDocumentBleed

	InDesign namespace settings	AsReaderSpreads
	CropImagesToFrames
	ErrorControl
	FlattenerIgnoreSpreadOverrides
	IncludeGuidesGrids
	IncludeNonPrinting
	IncludeSlug
	OmitPlacedBitmaps
	OmitPlacedEPS
	OmitPlacedPDF
	SimulateOverprint

	Conversions Related to JDF	Creation of the basic JDF file
	Representation of PostScript keys as JDF entries	Conversion of the linear representation of setpagedevice keys

	Mapping of DSC comments into JDF elements and attributes	Composite jobs
	Pre-separated jobs with interleaved separations
	Pre-separated single-colorant jobs

	Mapping of parameters into JDF elements and attributes	General
	Image compression
	Page compression
	Fonts
	Color conversion
	Advanced
	PDF/X
	Conversion of parameters not available through the user interface

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDFMark Reference	Acrobat-PDFL SDK: PDFMark Reference
	Introduction	Syntax of pdfmark operators
	Usage with standard PostScript interpreters
	Syntax for private keys
	Named objects	Built-in named objects
	User-defined named objects
	Namespaces
	Adding content to named objects

	Basic Features	Annotations (ANN)	Text annotations (notes)
	Links
	Other annotations

	Articles (ARTICLE)
	Bookmarks (OUT)
	Document Info dictionary (DOCINFO)
	Document open options (DOCVIEW)
	Embedded file content (EMBED)	Distiller command line options to enable file embedding

	Graphics encapsulation (BP, EP, SP)
	Marked content (MP, DP, BMC, BDC, EMC)	Marked-content points
	Marked-content sequences

	Metadata (Metadata)
	Named images (NI)
	Page crops (PAGE, PAGES)
	Page label and plate color (PAGELABEL)
	Transparency (SetTransparency)	Transparency group XObject and soft mask

	Actions and Destinations	Actions	GoTo actions
	GoToR actions
	Launch actions
	Article actions

	Destinations	View destinations
	Defining named destinations
	Referencing named destinations

	Logical Structure	Elements and parents
	Structure operators
	Structure Tree Root	StRoleMap
	StClassMap

	Elements	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Element content	StBMC
	StBDC
	EMC
	StOBJ

	Attribute objects	StAttr

	Storage and retrieval of the implicit parent stack	StStore
	StRetrieve

	EPS considerations
	Tagged PDF

	Examples	Building an Output Intents array
	Named object examples
	Forms examples
	Structure examples

	JDF Features	Syntax
	XPath Examples

	Distilling Optional Content	Initialization and termination code
	Procedure definitions	AddASEvent
	BeginOC
	EndOC
	GetOCGPdfmarkTag
	OCEndPage
	SetOCGInitState
	SetOCGIntent
	SetOCGUsage
	SimpleOC

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Sample mapping table	Root node
	Emit-string
	Walk-structure
	Define-event-list
	Define-proc-list

	Editing the mapping tables

	Mapping Table Elements Reference	Call-event-list
	Call-proc-list
	Comment
	Conditional-delimiter
	Conditional-prefix
	Conditional-suffix
	Define-event-list
	Define-proc-list
	Element-name
	Emit-all-metadata
	Emit-string
	Evaluate-var
	Event
	Proc-doc-text
	Proc-enum
	Proc-enum-choice
	Proc-fixed
	Proc-graphic-content
	Proc-hex
	Proc-image-content
	Proc-integer
	Proc-length
	Proc-pixels
	Proc-property
	Proc-string
	Proc-var
	Property-name
	Property-type
	Root
	Void
	Walk-cached-property-sets
	Walk-children
	Walk-layout
	Walk-metadata
	Walk-proplist
	Walk-structure

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Snippet Runner Cookbook	Acrobat-PDFL SDK: Snippet Runner Cookbook
	Installing and Running SnippetRunner	SnippetRunner Common Interface	Installing the Common Interface
	Starting the SnippetRunner
	Starting the Common Interface for PDFL
	Creating the configuration file

	Running as a standalone Java application
	Running as a Java applet
	Known issues
	Using the Common Interface

	Writing Snippets	Passing parameters to snippets
	Toggling behavior and asynchronous snippets
	Handling exceptions
	Handling documents

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Tracker	Acrobat-PDFL SDK: Tracker APIs	Benefits of RSS
	Customizing the interface

	Tracker API	Tracker URL API	Add a subscription
	Update a subscription
	Select a subscription
	Remove a subscription
	Convert a subscription to a PDF file
	Display Tracker

	RSS XML feed extensions	Namespace
	Channel extensions
	Item extensions

	User interface driver	Dialog object
	Driver object
	Layout description object
	RSS object
	Selection object

	Customization Examples	Grouping elements
	Adding an external interface driver

	Master Doc Search and TOC

	Acrobat-PDFL SDK: 3D API Reference	Acrobat-PDFL SDK: JS 3D APIs	Object overview	Basic objects
	Scene object
	Canvas object
	Runtime object
	Console object
	Resource objects
	Event handlers
	CameraEvent
	KeyEvent
	MenuEvent
	MouseEvent
	RenderEvent
	ScrollWheelEvent
	SelectionEvent
	TimeEvent
	ToolEvent

	JavaScript Objects for Acrobat 3D	Animation
	Background	getColor
	getImage
	setColor
	setImage

	Bone
	BoundingBox
	Camera	getScreenFromPosition
	getDirectionFromScreen

	CameraEvent
	CameraEventHandler	CameraEventHandler
	onEvent

	Canvas	getCamera
	setCamera

	ClippingPlane	remove

	Color	Color
	Color
	set
	set
	set3

	Console	print
	println

	Dummy
	FlashEvent
	FlashEventHandler	onEvent
	FlashEventHandler

	FlashMovie	FlashMovie
	call
	getVariable
	gotoFrame
	isPlaying
	pan
	play
	rewind
	setVariable
	setZoomRect
	stop
	zoom

	HitInfo
	Host
	Image	Image

	KeyEvent
	KeyEventHandler	KeyEventHandler
	onEvent

	Light
	Material	attachFlashMovie

	Matrix4x4	Matrix4x4
	Matrix4x4
	invertInPlace
	isEqual
	multiply
	multiplyInPlace
	rotateWithQuaternion
	rotateWithQuaternionInPlace
	rotateAboutLine
	rotateAboutLineInPlace
	rotateAboutX
	rotateAboutXInPlace
	rotateAboutVector
	rotateAboutVectorInPlace
	rotateAboutY
	rotateAboutYInPlace
	rotateAboutZ
	rotateAboutZInPlace
	scale
	scaleInPlace
	set
	set
	set
	setIdentity
	setView
	transformDirection
	transformPosition
	translate
	translateInPlace
	transposeInPlace

	MenuEvent
	MenuEventHandler	MenuEventHandler
	onEvent

	Mesh	computeBoundingBox
	setColor

	MouseEvent
	MouseEventHandler	MouseEventHandler
	onEvent

	Node	detachFromCurrentAnimation

	Procedural
	Quaternion	Quaternion
	Quaternion
	Quaternion
	interpolate
	interpolateInPlace
	normalize

	RenderEvent
	RenderEventHandler	RenderEventHandler
	onEvent

	RenderOptions
	Resource	Resource

	Runtime	addCustomMenuItem
	addCustomToolButton
	addEventHandler
	disableTool
	enableTool
	getEventHandler
	getRendererName
	getView
	getView
	pause
	play
	refresh
	removeEventHandler
	removeCustomMenuItem
	removeCustomToolButton
	setCurrentTool
	setCustomMenuItemChecked
	setView
	setView

	Scene	activateAnimation
	addFlashForeground
	addModel
	createClippingPlane
	createLight
	createSquareMesh
	computeBoundingBox
	update

	SceneObject
	SceneObjectList	getByGUID
	getByID
	getByIndex
	getByName
	removeAll
	removeByIndex
	removeItem

	ScrollWheelEvent
	ScrollWheelEventHandler	ScrollWheelEventHandler
	onEvent

	SelectionEvent
	SelectionEventHandler	SelectionEventHandler
	onEvent

	StateEvent
	StateEventHandler	onEvent
	StateEventHandler

	Texture	getImage
	setImage

	TimeEvent
	TimeEventHandler	TimeEventHandler
	onEvent

	ToolEvent
	ToolEventHandler	ToolEventHandler
	onEvent

	Vector3	Vector3
	Vector3
	add
	addInPlace
	addScaled
	addScaledInPlace
	blend
	blendInPlace
	cross
	dot
	normalize
	scale
	scaleInPlace
	set
	set
	set3
	subtract
	subtractInPlace

	View

	Master Doc Search and TOC

 Acrobat Developer Home
 Document Services SDK
 Acrobat Sign SDK
 Acrobat SDK
 PDF Library SDK

 Console

 Acrobat-PDFL SDK Documentation

 	 »
	Acrobat-PDFL SDK: Plugin Development »
	Creating Plugin and PDF Library Applications
	

 Next

 Previous

Creating Plugin and PDF Library Applications¶

Use the Acrobat SDK and the Adobe PDF Library SDK to create plugin applications as well as stand-alone applications that interact with PDF documents.

Working with platform-specific techniques¶

The Acrobat API is nearly platform-independent. By using the memory allocation and file system APIs provided by Acrobat or Adobe Reader, many parts of a plugin are highly portable across platforms. While this chapter contains platform-specific development information for Windows and Mac, the guidelines here should help you plugins more portable among the various supported platforms.

About platform-dependent data¶

The following are platform-specific data types that appear explicitly in the Acrobat core API:

	platform data structures: Data structures such as the Win32 data structure that represents a window.

	platform path values: The data structure that represents the path to a file.

	platform event: The data structure that represents mouse clicks, key presses, window activation, and so on.

	Return value: Constants that indicate, for example, that a file could not be opened because it was not found.

The following are platform-specific data types that do not appear explicitly in the API, but are used by Acrobat, Adobe Reader, or plugins:

	Cursors: Data structures representing a cursor.

	Toolbar button icons: Pixmaps that appear in the Acrobat or Adobe Reader toolbar.

	Menu item icons: Icons that some platforms let you display adjacent to a menu item.

	Menu items: Remember that not all Acrobat or Adobe Reader implementations have the same menu items.

Portability techniques¶

The following techniques can improve your plugin’s portability:

	Use predefined types instead of short and long.

	Use Acrobat API methods wherever possible instead of platform-specific APIs.

	Use #if around platform-specific code such as dialog boxes and use the predefined platform constants (MAC_PLATFORM, WIN_PLATFORM, and so forth) to test what platform you are compiling for.

	Place platform-specific code in separate files from the main portion of the plugin, so that you can easily recognize and rewrite platform-dependent sections.

Windows techniques¶

Developing Windows plugins¶

You can put your plugins in the default Acrobat plugin location the plugins folder (in the same directory as the Acrobat executable).

You are encouraged to use the plugin samples BasicUI and Starter as a basis for developing plugins. These samples have all of the appropriate project settings. The Starter sample only builds a loadable plugin while the BasicUI sample adds menu items.

Locating and loading plugins¶

When Acrobat or Adobe Reader starts, it scans the plugins folder (in the same directory as the Acrobat executable) for DLLs with the extension.API. Acrobat or Adobe Reader also searches nested directories, allowing you to group plugins in folders. When it locates a file with the extension.API, it looks for the PlugInMain exported symbol, which specifies the entry point for your plugin. Acrobat or Adobe Reader loads the plugin by invoking the LoadLibrary function and then calls the function referenced by the PlugInMain symbol.

The LoadLibrary function calls your plugin’s DLLMain entry point with the parameter DLL_PROCESS_ATTACH passed. Your plugin can run some initialization code in DLLMain, such as allocating memory, before its PluginMain function is called by Acrobat or Adobe Reader.

If you allocate memory in your plugin’s DLLMain entry point, it must deallocate that memory when DLLMain is called with DLL_PROCESS_DETACH. If your plugin relies on its implementation of the PluginUnload function to deallocate memory, it could fail if Acrobat or Adobe Reader unloads the plugin immediately without calling the plugin’s handshaking callbacks. This would happen in the following situations:

	If the plugin is not Adobe-certified and the user has specified the Certified Plugins Only option in the Preferences settings.

	If the plugin is running under Adobe Reader, but it is not enabled for Adobe Reader. This could potentially cause a crash when Acrobat or Adobe Reader closes.

Why a plugin might not load¶

There are several reasons why a plugin may not load successfully:

	The plugin’s filename extension was not changed from.dll to.api.

	Too many plugins are being loaded by either Acrobat or Adobe Reader. The number of plugins that can be loaded at any one time depends on the code generation settings of all loaded plugins.

	The plugin attempts to register with the same extensionName as another plugin that has already loaded. In this case, Acrobat or Adobe Reader displays an error message indicating the problem.

	You cloned your project from an existing plugin project that uses a.def file and forgot to change the LIBRARY entry in the.def file.

	The DLL is bad. This can occur even if the plugin compiled and linked without errors. Generally, rebuilding the plugin completely (doing a Rebuild All) solves the problem.

Macros and project settings¶

The following macros must be defined or set in your preprocessor definitions:

	WIN_ENV

	WIN_PLATFORM (preferred)

	WIN32

	WINDOWS

For a plugin to be loaded, it must export the symbol PlugInMain. This task can be accomplished by including a.def file in the project for the plugin or by including the line /EXPORT:PlugInMain in the project settings for the plugin. If you are developing an Adobe Reader plugin, you also must define a macro to access HFTs available to Adobe Reader. (See Creating an Adobe Reader Plugin.)

Interapplication communication¶

Plugins can add their own DDE messages to those supported by Acrobat or Adobe Reader by registering to receive DDE messages directly. The DDEClnt sample in the Acrobat SDK shows how to do this.

A plugin cannot implement OLE automation or be an ActiveX server through the use of MFC. This is because Acrobat or Adobe Reader uses MFC to implement its OLE automation and there cannot be two MFC-based OLE automation servers in the same process. OLE or ActiveX server plugins must be implemented using the ActiveX Template Library. Plugins should use the DDEML library to handle DDE messages. Problems may arise if they do not.

Debugging¶

Generally, the debugger built into Visual C++ is adequate to debug plugins. Debugging a Windows plugin compiled with Visual C++ is quite simple if you remember a few things:

	Specify the Acrobat plugin directory under the link | output tab in the Project Settings dialog box.

	Specify the Acrobat or Adobe Reader executable under the executable for debug session in the Project Settings dialog box.

	The first time you build a plugin, do a Rebuild All.

	Set breakpoints in your source code by selecting the line and clicking the hand icon or pressing the F9 key.

	After setting breakpoints, press the F5 key to have Microsoft Visual Studio start Acrobat or Adobe Reader.

Two common reasons why breakpoints may not be hit are:

	You started Acrobat or Adobe Reader from the File Manager or Program Manager. Acrobat or Adobe Reader must be started from within Microsoft Visual Studio to debug plugins.

	You copied your plugin into Acrobat’s plugin directory, instead of specifying the plugin directory in the Link | Output dialog box.

Handling the thread local storage (TLS) limit¶

There is a limit to the number of plugins that Acrobat or Adobe Reader can load at any given time. This is due to a limitation of the multi-threading model used by the Win32 API and is dependent on the code generation settings of the plugins being loaded.

The following information can help maximize the ability of Acrobat and Adobe Reader to load plugins.

When a process is created, an array of bit flags is allocated for the management of thread-specific data. In the current Win32 implementation, this array is limited to 64 members or TLS slots. Every DLL/plugin that uses thread local storage is allocated at least one slot when loaded using LoadLibrary. This includes system DLLs, plugins, and all the DLLs they load. When all of the TLS slots have been occupied for a process, LoadLibrary will fail for any DLL requiring a TLS slot.

The following guidelines will minimize the TLS slots occupied by plugins:

	Plugins that are not multi-threaded should only link with the single-threaded run-time libraries that do not occupy a TLS slot.

	If your plugin is multi-threaded, consider linking it with the multi-threaded DLL run-time library. Both the DLL and static versions of the run-time libraries occupy a TLS slot. However, many plugins shipped with Acrobat or Adobe Reader use the DLL version so the run-time DLL does not occupy another TLS slot after it is loaded by the process.

Note

Acrobat and Adobe Reader do not currently generate an error when a plugin fails to load due to the TLS limit.

Using modal dialog boxes¶

If you write plugins that contain modal dialog boxes on the Windows platform, you need to perform the following steps:

	When you are creating your dialog box, get the parent HWND of the dialog box using the WinAppGetModalParent method. Then use this HWND when creating the dialog box.

Ensure that you get the mouse capture before putting up your dialog box so that Acrobat or Adobe Reader does not receive the mouse clicks. After your dialog box returns, set the mouse capture back.

HWND CapturehWnd, hParent;
 CapturehWnd = GetCapture();
 if (CapturehWnd != NULL)
 ReleaseCapture();
 hParent = WinAppGetModalParent(AVAppGetActiveDoc());
 nRetVal = DialogBox(gHINSTANCE, MAKEINTRESOURCE(IDD_PROPS), hParent,
 PropsDialogProc);
 if (CapturehWnd != NULL)
 SetCapture(CapturehWnd);

	As soon as you have an HWND for the dialog box itself, usually in response to the WM_INITDIALOG message, you should acquire a new AVWindow using the AVWindowNewFromPlatformThing method. Save this AVWindow in some place where you can access it when the dialog box is destroyed. Then pass the AVWindow to the AVAppBeginModal method.

Here is code that is called in response to a WM_INITDIALOG message:

static AVWindow sAVWin;
.....
 // hWnd is the window handle of the dialog box window
 sAVWin = AVWindowNewFromPlatformThing(AVWLmodal, 0, NULL,
 gExtensionID, hWnd);
 AVAppBeginModal(sAVWin);

	At the time the dialog box is destroyed, usually in response to a WM_DESTROY message, end the modal operations using AVAppEndModal. If you are not using MFC, destroy the AVWindow for which you saved the handle with AVWindowDestroy. Here is a section of code called in response to a WM_DESTROY message:

AVAppEndModal();
AVWindowDestroy(sAVWin);

If you are using MFC to put up your dialog box, do not call AVWindowDestroy in the WM_DESTROY message. MFC will cause Acrobat or Adobe Reader to destroy the AVWindow automatically.

Mac OS techniques¶

Developing a Mac OS plugin¶

Apple Xcode 9.2is the currently-supported development environment for developing plugins. Apple developer tools contain the correct frameworks and libraries in addition to extensive documentation on making plugins (and applications) Mach-O and Carbon compliant.

With macOS 10.14.5 and macOS 10.15 Catalina, Apple has mandated notarization of all applications. Conforming to this requirement, October 2019 updates for both Adobe Acrobat and Adobe Acrobat Reader applications on DC and 2017 tracks are notarized. Adobe recommends that third-party plug-in developers should get their plug-ins notarized by Apple. Without notarization, your plug-ins will fail to load in Adobe Acrobat and Adobe Acrobat Reader on macOS 10.14.5 and above.

For more information on the Apple Notarization process, see Notarizing Your App Before Distribution.

Note

Acrobat SDK samples are built against the MacOSX10.11 as universal binaries.

Using the samples¶

You are encouraged to use the Starter plugin sample as a basis for developing your plugins. This sample contains the appropriate project settings as defined in the supplied Xcode project configuration files. The Starter sample does nothing other than build a loadable plugin. In addition, other plugins that could be useful as a starting point for developing plugins are available.

The Info.plist file contains a list of properties used by the package. Adobe provides a common info.plist file. It uses project settings to define properties appropriately for each plugin.

Establishing Carbon or Cocoa compliance¶

Carbon and Cocoa are application environments of the Mac OS X operating system. Each includes programming interfaces that include header files, a library, and a runtime.

Acrobat 9.0 uses property lists (Info.plists), which are stored with the executable files and resources that make up an application, known as an application bundle. For more information about converting existing Mac OS applications into Carbon, see http://developer.apple.com/documentation/Carbon/Conceptual/carbon_porting_guide/.

Note

To prevent problems with older style event handling, plugins must replace calls to WaitNextEvent with calls to RunCurrentEventQueue or ReceiveNextEvent.

Xcode configuration files¶

Mac OS plugin sample build settings are defined in SDK and project-level configuration files and not within the projects themselves. Xcode configuration files include lists of build settings definitions that can be applied to multiple projects and/or multiple targets.

The configuration files and settings have a hierarchical structure modeled after Apple Developer documentation

Each project is based on a project-level build settings file(s) that includes SDK-level settings.

At the SDK level, there are separate configuration files for SDK plugin settings (Default.xcconfig), environmental variables (Environment.xcconfig) and resource settings (Resources.xcconfig). Global target settings for _debug and _release targets are stored in Debug.xcconfig and Release.xcconfig, respectively.

At the project level, there are four configuration files:

	ProjectDefault.xcconfig

	ProjectResources.xcconfig

	Project_debug.xcconfig

	Project_release.xcconfig.

Each project level configuration file includes the settings from its related (parent) SDK configuration file (for example, ProjectDefault.xconfig includes Default.xcconfig and ProjectResources.xcconfig includes Resources.xcconfig). Generally, SDK-level setting definitions are not included directly, but rather are included through project-level configuration files.

Each SDK plugin project includes a single (Default) configuration based on the ProjectDefault.xcconfig build settings which include the SDK-level Default.xcconfig build settings. Each project has two targets: a _debug target and a _release target. The targets’ build settings are based on Project_debug.xcconfig and Project_release.xconfig, respectively. Similar to the project configuration files, each target configuration settings include its parent SDK configuration file; for instance, Project_debug includes Debug.xcconfig settings.

Project-level configuration files whose names begins with Project are the default project settings included with most SDK plugin samples. Project-level configuration files that are prefixed with a specific sample’s name include settings specific to that sample. The build settings for most SDK projects are extremely similar with most definitions residing in the SDK configuration files.

Using SetGWorld rather than SetPort¶

With the move to carbonization and double buffering, you should use GetGWorld rather than the toolbox call SetPort. Using both calls in the same plugin can cause the current port to get out of sync with the current device. Using only GetGWorld maintains the correct port and device settings.

In all cases, you should pass GetMainDevice unless you have a particular device in mind or you are restoring the GWorld to its original state. The following code is an example.

ACCB void ACCB2 foo(AVPageView pageView)
 {
 CGrafPtr oldGWorld, pagePort = NULL;
 GDHandle oldDevice;
 pagePort = (CGrafPtr)AVPageViewAcquireMachinePort(pageView);
 if (pagePort){
 GetGWorld(&oldGWorld, &oldDevice);
 SetGWorld(pagePort, GetMainDevice());
 //Draw to the port here
 SetGWorld(oldGWorld, oldDevice);
 AVPageViewReleaseMachinePort(pageView, pagePort);
 }
 }

Locating and loading a plugin¶

When Acrobat or Adobe Reader starts, it scans the plugin folder to locate and load plugins with the acroplugin file extension. PowerPC plugins must have creator CARO (CFBundleSignature) and type XTND (CFBundlePackageType). Each plugin exports a single main entry point, AcroPluginMain. When loading a plugin, Acrobat or Adobe Reader jumps to the plugin’s entry point to begin handshaking. (See Handshaking.)

Using memory¶

The Acrobat or Adobe Reader memory allocator gets its memory from the system and not from the application’s memory partition. (See Acquiring and releasing objects.)

Memory allocation guidelines are particularly important in Mac OS to ensure that memory is allocated from the system rather than from the application partition. Otherwise, your plugin is very likely to cause Acrobat or Adobe Reader to run out of memory.

Resource file considerations¶

Acrobat or Adobe Reader open a plugin’s resource file with read-only permissions. In addition, plugins cannot assume that their resource file is on top of the resource chain each time they are entered by using an ASCallback. Plugins must explicitly move their resource file to the top of the resource chain before accessing resources in it. As a result, all code that directly or indirectly invokes GetResource must be modified. This can be accomplished either directly or by using the SafeResources routines in the Acrobat SDK.

Using SafeResources¶

The recommended way to access resources in the plugin file is to use the functions declared in the header file SafeResources.h in the SDK. These functions are direct replacements for each Toolbox function that directly or indirectly calls GetResource. The replacement functions automatically place the plugin file on top of the resource chain before accessing the resource, and restore the old resource chain after accessing the resource.

Manipulating the resource chain directly¶

If you choose to manipulate the resource chain directly, you must modify all code that directly or indirectly calls GetResource. The list of such Toolbox calls can be determined from SafeResources.h, by removing the prefix Safe from the names of the calls. Before calling each such Toolbox function, you must put the plugin’s resource file on top of the resource chain, and after such calls, you must restore the old resource chain. For example:

DialogPtr myDialog = GetNewDialog(23, NULL, (Ptr) -1);

must be rewritten as:

short oldResFile;
 DialogPtr myDialog;
 oldResFile = CurResFile();
 UseResFile(gResFile);
 myDialog = GetNewDialog(23, NULL, (Ptr) -1);
 useResFile(oldResFile);

The global variable gResFile is automatically set up during handshaking and is declared in PICommon.h.

Macros¶

The following macros must be defined:

	POWER_PC must be defined

	PLATFORM must be defined as MacPlatform.h

	PRODUCT must be defined as Plugin.h

These macros are automatically defined correctly for the platform and development environment by the header file PIPrefix.h. You are encouraged to use this header file.

Mac OS-only methods¶

Plugins should not use the ASPathFromPlatformPath method in Mac OS. Instead, they should invoke ASFileSysCreatePathName. The AVAppDidOrWillSwitchForDialog method is only useful to plugins in Mac OS.

Inter application communication¶

Plugins can add their own Apple events to those supported by Acrobat or Adobe Reader by hooking into the Apple event handling loop for Acrobat or Adobe Reader. This is done by replacing the AVAppHandleAppleEvent method in the API. If the plugin receives an Apple event it does not want to handle, it should invoke the implementation of the method it replaced, allowing other plugins or Acrobat or Adobe Reader the opportunity to handle the Apple event.

Creating a sample plugin¶

When you start a new Acrobat plugin for the Windows platform, it is recommended that you use the Starter sample plugin as a starting point. On Windows, the project file is named Starter.sln and can be found in the following directories:

	C:Acrobat SDKPluginSupportSamplesStarterwin32

	C:Acrobat SDKPluginSupportSamplesStarterwin64

However, to improve your understanding of creating plugins, the remaining parts of this section discuss what tasks you must perform when creating a plugin from a blank project. When using the Starter sample plugin, it is not necessary to perform some of the tasks discussed in this section. For example, you do not need to start a new project, include header files, or add the PIMain source file. However, you still have to add application logic, compile, and build your project.

If you are developing on Windows using Visual Studio, you can use the Plugin Wizard tool to set up your plugin project. This tool includes the Acrobat SDK header files required for specific types of plugin solutions, and it adds the PIMain source file. The Wizard creates classes that uses ToDo markers to identify logic you must supply. You must still compile and build your plugin, as described in this section. See the Plugin Wizard, see.

For information on developing an Adobe Reader plugin, see Creating an Adobe Reader Plugin.

To create a plugin:

	Start a new C project.

	Include Acrobat SDK header files.

	Add the PIMain source file to your project.

	Add application logic to meet your business requirements.

	Compile and build your plugin.

Including Acrobat SDK library files¶

To create a plugin, you must include Acrobat SDK library files, such as header files, into your project. You can link to these library files from within your development environment. For more information, see the documentation that accompanies your development environment.

The Acrobat SDK library files are separated into the following categories:

	Header files that are common to most plugins and generally referenced from PIMain.c.

	Header files specific to core and extended APIs.

You can find these header files in Acrobat SDKPluginSupportHeaders

Adding the PIMain source file¶

You must add the PIMain.c file to your project in order to create a plugin. This source file contains application logic such as handshaking methods, that are required by plugins. You can find this file in Acrobat SDKPluginSupportHeadersAPI

After you add this file, you can add application logic to your project.

Note

As a plugin developer, you will never have to create the application logic that is located in the PIMain.c file or modify this file. However, you must include this file in your project.

Adding application logic¶

You must add a source file to your project that contains the following methods:

	PluginExportHFTs

	PluginImportReplaceAndRegister

	PluginInit

	PluginUnload

	GetExtensionName

	PIHandshake

You can copy the source code that is located in the StartInit.cpp file (located in the Starter plugin) and paste it. For information about these methods, see Plugin loading and initialization.

The entry point to a plugin is the PluginInit method. For example, if you add the following line of code to this method, an alert box is displayed when Adobe Reader or Acrobat is started:

AVAlertNote("This is your first plugin");

You can add an application to the PluginInit method to meet your business requirements. You can invoke other user-defined functions that you create or you can add application logic to this method that performs a specific task. For example, you can add application logic to this method that adds a new menu item to Adobe Reader or Acrobat. (See Creating Menus and Menu Commands.)

Compiling and building your plugin¶

You must compile your plugin to build the API file. As stated earlier in this guide, plugins are equivalent to Windows DLLs; however, the file extension is.api, not.dll. Once you create an API file, you must add it to Program FilesAdobeAcrobatplugins.

After you add the plugin to this directory, you must restart Acrobat for the plugin to take effect.

Creating a sample PDF Library application¶

A PDF Library application does not have the same overhead as a plugin. That is, unlike a plugin, a PDF Library project does not require handshaking and initialization methods. A PDF Library application is a standard C/C++ project with PDF Library files included.

Note

For a detailed discussion about using the PDF Library API, see Inserting Text into PDF Documents.

Contents of the PDF Library SDK¶

The Adobe PDF Library SDK consists of the following components:

	Core libraries that provide PDF Library functionality

	Header files that provide access to the libraries

	Fonts used in the library’s basic operations

	Sample applications and code snippets showing how to use the library for a variety of purposes

	Documentation discussing development techniques and the PDF Library APIs.

Including library files¶

The following components are shipped with the PDF Library SDK:

	Acrobat PDF Library: These are DLLs on the Windows platform and a shared object library Mac OS. In Windows, an interface library must be included in your Microsoft Visual Studio project. The following are the file names of these libraries:

	AdobePDFL.lib: The interface library for the Windows PDF Library DLL.

	AdobePDFL.dll: The Windows PDF Library DLL.

	libpdfl.so: The shared object library for supported UNIX platforms (deprecated).

	AdobePDFL framework: The framework for Mac OS.

	PDF Library SDK header files: The PDF Library SDK include directory contains headers for accessing the API methods. You can link to these library files from within your development environment. Consult the documentation that accompanies your development environment for information about linking to library files.

These files perform the same task in the PDF Library SDK as in the Acrobat SDK. For example, the PDCalls.h provides HFT functionality for PD layer functions. (See Including Acrobat SDK library files.)

Sample code¶

Samples are provided for the Windows and Mac OS in two forms:

	Stand-alone sample programs- mi

	The SnippetRunner, an environment and infrastructure for code snippets that illustrate specific functions or techniques.

Sample code is intended to demonstrate the use of the PDF Library API and is not necessarily robust enough for a final implementation. The sample code itself is platform-independent, as is the majority of the PDF Library API; the only difference between the sample source code for different platforms is the line-endings.

The Mac OS samples are provided as application packages. This format is normal for double-clickable applications, but they can also be run from the command line. To run them from the command line, you can either specify the command line arguments in the Xcode project file and execute within the IDE, or you can target the actual executable, which is in the Contents/MacOS folder inside the package. For example, from the Terminal window:

$ cd helowrld.app/Contents/MacOS/
$ helowrld

The MT (multi-threading) samples require command line arguments (a default set is added to the project files). Therefore, execution from within the IDE is preferred. Also, for those samples you must use absolute paths for the command line arguments.

Stand-alone samples¶

The following table lists the stand-alone sample applications that accompany the PDF Library SDK.

	Sample application
	Description

	addelem
	Shows how to modify existing pages in a PDF file. It adds a footer to each page and shifts the first line of each text run.

	all
	Used to compile all samples at the same time. Available for Windows and Mac OS only.

	CreatePattern
	Shows how to create tiling patterns in a PDF document.

	Decryption
	Shows how to programmatic-ally decrypt a PDF document encrypted with Acrobat standard security options.

	drawtomemory
	Shows how to render a page to memory using the PDPageDrawContentsToMemory PDF Library method, and creates a PDF file with a bitmap image rendered on the page.

	fontembd
	Shows font enumeration and font embedding.

	helowrld
	Shows the basics of creating a PDF document.

	JPXEncode
	Re-encodes PDF embedded images with the JPX filter and writes out a new PDF file with the re-encoded images embedded.

	mergepdf
	Shows how to merge two PDF files.

	MTInMemFS
	Demonstrates use of an in-memory file system for a simple workflow within a multi-threaded context.

	MTSerialNums
	Demonstrates creation of multiple threads to simultaneously generate multiple PDFs.

	MTTextExtract
	Demonstrates multiple threads concurrently processing multiple PDF documents.

	Peddler
	Shows how to add hyperlinking (specifically targeting URIs) capabilities to an existing PDF document.

	printpdf
	Shows how to print a PDF file to a printer or to a file using the PDF Library method PDFLPrintDoc.

SnippetRunner application¶

SnippetRunner allows you to quickly prototype code containing PDF Library API calls without the overhead of writing and verifying a complete application. It provides an infrastructure and utility functions to support execution and testing of code snippets, which are small but complete portions of PDF Library application code.

SnippetRunner consists of these major components:

	An application that acts as a back-end server and that provides the basic functionality, including a parameter input mechanism, debug support, and exception handling.

	A graphical user interface that acts as a client to the back-end server. (This user interface, called the Common User Interface, is also provided with the Acrobat SDK, which uses an Acrobat plugin for its back end.)

For more information about SnippetRunner, see the Snippet Runner Cookbook.

Developing applications with the Adobe PDF Library¶

This section details the compiler environment variables (macros) required to build applications against the Adobe PDF Library. On all platforms, you must define the PRODUCT macro for the preprocessor.

PRODUCT="HFTLibrary.h"

This macro is used as a trigger for conditional compilation and allows the same headers to be used for both the Acrobat core API and the Adobe PDF Library.

Windows¶

The following macros must also be defined in the IDE project settings for applications to compile correctly on the Windows platform:

	WIN_ENV

	WIN32

	WIN_PLATFORM

The Adobe PDF Library is compiled with code generation set to Multithreaded. Applications linking with the Adobe PDF Library must have code generation settings that match or there will be conflicts between the Microsoft libraries MSVCRT and LIBCMT.

In Visual Studio, the Ignore Libraries settings (click Project Settings > Link > Input > Ignore libraries) should not ignore LIBCMT (other versions of PDF Library do ignore it).

The Adobe PDF Library is distributed as an interface library (AdobePDFL.lib) and matching DLL (AdobePDFL.dll). You should link the interface library into your application.

The operating system must be able to access the Adobe PDF Library at runtime. It does so by searching the paths specified by the PATH environment variable, as well as the folder in which the application was launched.

Mac OS¶

The Mac OS libraries use a precompiled header and prefix file to define the appropriate macros. See Precompile.pch in the Samples:utils directory of the Adobe PDF Library SDK for the macros required to successfully compile the samples.

Initialization and termination¶

Applications must initialize and terminate the Adobe PDF Library appropriately:

	Call PDFLInit to set up internal data structures, locate required resources such as fonts, and perform initialization (such as setting client-provided memory allocation routines). Calling most library functions without successfully initializing the library results in error conditions. The rest of this section provides details on using PDFLInit.

	Call PDFLTerm to clean up before an application terminates or when access to PDF Library functionality is no longer needed.

Since the PDF Library supports thread-safety (since version 6.1.2), initialization and termination are handled on a per-thread basis.

The PDFLInit function takes as a parameter a PDFLData structure, defined in the API header file PDFInit.h. You must provide valid values for the following members of the structure before passing it to PDFLInit :

	size denotes the size of the structure and can be obtained with sizeof(PDFLDataRec).

	listLen is the number of directories listed in dirList.

	dirList is an array of directories that contain font resources. The following discussion explains how to use this member on each of the supported platforms.

In Windows and Mac OS, the PDF Library searches for fonts in the default system and in their subdirectories (to 99 levels). You can specify additional font directories to search (also to 99 levels) in the dirList array. (Note that this can affect performance.)

Here is an example showing how to pass the font paths to dirList for Windows:

pdflLibData.dirList[0]= strdup("C:MyfontfolderCMap");
 pdflLibData.dirList[1]= strdup("C:MyfontfolderCIDFont");
 pdflLibData.dirList[2]= strdup("C:MyfontfolderFont");

The paths can be either full paths or paths relative to the directory from which the executable linking in the Adobe PDF Library was started. You can set the value kPDFLInitIgnoreDefaultDirectories in the flags field of the PDFLData structure to indicate that the default font directories should not be searched but only the directories provided in dirList.

For more details, see the functions PDFLGetDirList_Win and PDFLGetDirList_Mac in the MyPDFLibUtils.cpp file in the Samples/utils directory.

Multithreading¶

When using the thread-safe PDF Library, initialization and termination now additionally need to be performed for each thread that calls into the library, as well as at the process level. The interfaces for per-thread initialization/termination are the same as before.

Since each thread acquires an independent PDF Library memory context, you should not share PDF Library data and resources among threads. This includes sharing the same PDF file.

The Adobe PDF libraries are thread-safe. To use threads, simply make the appropriate system call (beginthreadex on Windows). Multiple threads cannot share PDF Library data types. However, they share the same process heap; therefore, an application can share generic data types between threads. Multiple threads can open the same file read-only; however, multiple threads should not attempt to write to the same PDF document.

In Windows, CreateThread is not recommended if the application is using most stdio.h-defined functions, including file I/O and string manipulation. It is best to use _beginthreadex on Windows, which performs extra bookkeeping to ensure thread safety.

Upgrading existing plugins¶

This section discusses how to upgrade an existing Acrobat plugin to work with a newer version of Acrobat.

Refer to the Release Notes.

Detecting supported APIs¶

Acrobat Pro and Acrobat Pro Extended support the full set of APIs. For Acrobat Standard and Adobe Reader, if you try to use an API that is not supported, nothing will happen. The same HFT version numbers are used across products, so all APIs are callable on all products, but some APIs simply do not work on certain products.

Additionally, the Extended APIs provided by plugins do not work if an Acrobat product does not support the use of those APIs. The HFTs do not load, so you must check whether the HFT was successfully imported.

It is possible to determine in your code whether the HFT you are expecting is in fact the one that you are importing, and whether it imported at all: simply check for a NULL return value. For example, a NULL will be returned in the following call if AcroColorHFTNAME with the specified version is not available:

gAcroColorHFT = ASExtensionMgrGetHFT(ASAtomFromString(AcroColorHFTNAME),
 PI_ACROCOLOR_VERSION);

Plugins that use new HFTs introduced with the current Acrobat version do not run on earlier Acrobat versions. Whether or not an attempt to load these HFTs forces the plugin to fail is controlled by flags in PIMain.c of the form PI_HFT_OPTIONAL. By default, these flags are undefined, so if your plugin attempts to load HFT and cannot, initialization fails. If you define PI_HFT_OPTIONAL with some value (preferably 1) and the load is not successful, initialization continues.

Use the ASGetConfiguration method to determine the configuration on which the plugin is running. Use conditional logic in your code so that it makes calls only to APIs that are supported on that particular configuration. In any case, your code should check for NULL HFTs so that it does not call APIs that are not supported on the current configuration.

Under Adobe Reader, when a rights-enabled PDF file is opened, a flag is set that allows a plugin to use APIs that become enabled as a result of loading the rights-enabled PDF. Familiarize yourself with the features available on the different configurations of Acrobat to ensure that you install plugin menus and toolbars appropriately at initialization. Ensure that you make calls only to APIs supported on the platform detected.

Migrating PDFL apps to Xcode¶

For the PDF Library, the supported Mac OS X development environment is Xcode (formerly the supported environment was Metrowerks CodeWarrior). With this change comes a new set of headers, frameworks and libraries that may or may not be compatible with existing plugin code and with existing CodeWarrior projects.

You can migrate a PDF Library application that was created using CodeWarrior to Xcode. As a starting point, it is recommended that you read the information that is located at the following URL: http://developer.apple.com/documentation/DeveloperTools/Conceptual/MovingProjectsToXcode/index.html.

The PDF Library SDK samples have debug and release targets that are built against the MacOSX10.4u.sdk SDK. These are carbon applications that create universal binaries linked to universal Adobe libraries. For a complete list of compatible application build settings, see the MacSDKConfiguration Xcode configuration files and ProjectConfigurations files included in the PDF Library SDK.

 © Copyright 2022, Adobe Inc..

 Last updated on May 02, 2023.

