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Working with Cos Objects¶

A PDF file is structured as a tree of low-level objects, called Cos objects. Cos objects form all PDF document components, such as bookmarks, pages, fonts, images, and annotations. The Acrobat core API contains methods (the Cos layer) that enable you to operate directly on these low-level objects. You may encounter a situation where you want to perform a task that is not supported by using AV and PD layer methods. In such a situation, it is necessary to use Cos methods.

For example, the Creating Annotations chapter explains how to set text annotations properties by using PDTextAnnot methods. Some newer types of annotations, such as 3D annotations, have properties that cannot be accessed directly by PD layer methods. As a result, you must use Cos layer methods to access the PDF dictionary that represents the annotation. (See Creating 3D annotations.)


Caution

Care is required when working with Cos objects. Unlike using AV and PD objects, Cos objects can produce invalid PDF files. Before working with Cos objects, it is strongly recommended that you be familiar with concepts such as resource dictionaries as discussed in the PDF Reference




About Cos objects¶

PDF files contain various Cos object types. In addition to basic data types such as integer, fixed, and Boolean values, Cos objects also contain the following object types:

	Array

	Dictionary

	Name

	String

	Stream




About direct and indirect objects¶

You can create Cos objects as either direct or indirect objects; the choice is specified as a parameter to the method that creates the object. A direct object is placed directly into another object (such as an array or dictionary). Direct objects cannot be shared between two or more dictionaries or arrays. An indirect object is labeled so that it can be referenced by other objects multiple times. The following is the syntax of an indirect object.

<object number> <generation number> obj
    <direct object>
endobj





<object number> <generation number> is known as an indirect object identifier. An object referencing another indirect object uses the following syntax:

<object number> <generation number>
R





This reference is equivalent to the direct object represented by the indirect object.

This example shows indirect object 6, followed by a reference to it in indirect object 7.

  6 0 obj
      (This is a string)
  endobj

  7 0 obj
    [ 6 0 R ] %An array with one element that is indirect object 6
endobj





If you were to retrieve the zeroth element in the array represented by object 7, you would get the Cos object that represents this string value:

This is a string





On the other hand, in the following definition of indirect object 8, the elements of the array are all direct objects (the integer objects, 1, 2, and 3).

8 0 obj
    [1 2 3]
endobj








About Cos object types¶

Two API objects exist in the Cos layer:

	CosDoc, which represents an entire PDF file.

	CosObj, which represents all the individual object types, such as a Cos string, described in this section. There are various methods to create the different types of Cos objects mentioned in this section, as well as getting and setting their values.




Cos strings¶

A string object consists of a series of bytes—unsigned integer values in the range 0 to 255. The string elements are not integer objects, but are stored in a more compact format. String objects can be written in the following ways:

	As a sequence of literal characters enclosed in parentheses

	As hexadecimal data enclosed in angle brackets




Literal strings¶

A literal string is written as an arbitrary number of characters enclosed in parentheses. Any characters may appear in a string except unbalanced parentheses and the backslashes, which must be treated specially. Balanced pairs of parentheses within a string require no special treatment.

The following are examples of literal strings:

(This is a string)
(Strings may contain newlines
and such)
(Strings may contain balanced parentheses ( ) and
special characters (*!&}^% and so on).)
(The following is an empty string.)
()
(It has zero (0) length.)





Within a literal string, the backslash () is used as an escape character for various purposes, such as including newline characters, nonprinting ASCII characters, unbalanced parentheses, or the backslash character itself in the string. The character immediately following the backslash determines its precise interpretation. If the character following the backslash is not one of those shown in the following table, the backslash is ignored. The following table shows valid literal string escape sequences.

	Escape sequence
	Description

	n
	Line feed (LF)

	r
	Carriage return (CR)

	t
	Horizontal tab (HT)

	b
	Backspace (BS)

	f
	Form feed (FF)

	(
	Left parenthesis

	)
	Right parenthesis

	
	Backslash

	ddd
	Character code ddd (octal)



If a string is too long to be conveniently placed on a single line, it may be split across multiple lines by using the backslash character at the end of a line to indicate that the string continues on the following line. The backslash and the end-of-line marker following it are not considered part of the string. For example, the following strings examples are equivalent:

(These two strings are the same.)
(These two strings are the same.)










Hexadecimal strings¶

Strings may also be written in hexadecimal form, which is useful for including arbitrary binary data in a PDF file. A hexadecimal string is written as a sequence of hexadecimal digits (0–9 and either A–F or a–f) enclosed within angle brackets (< and >). Consider the following example:

<4E6F762073686D6F7A206B6120706F702E >





Each pair of hexadecimal digits defines one byte of the string. White-space characters (such as space, tab, carriage return, line feed, and form feed) are ignored. If the final digit of a hexadecimal string is missing, that is, if there is an odd number of digits, the final digit is assumed to be 0. Consider the following example:

<901FA3>





This is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F, and A3, but <901FA> is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F, and A0.




Cos arrays¶

Arrays are one-dimensional collections of objects accessed by a numeric index. Array indexes are zero-based and may be any combination of the Cos data types. The following array has seven elements: three integers, a string, a Boolean value, a dictionary (containing one key-value pair), and an indirect object reference.

[ 1 2 3 (This is a string) true << /Key (The value) >> 6 0 R ]








Cos names¶

A name object is an atomic symbol uniquely defined by a sequence of characters. Uniquely defined means that any two name objects made up of the same sequence of characters are identically the same object. Atomic means that a name has no internal structure; although it is defined by a sequence of characters, those characters are not considered elements of the name.

/AName





A slash character (/) introduces a name. The slash is not part of the name but is a prefix indicating that the following sequence of characters constitutes a name. There can be no white-space characters between the slash and the first character in the name. The name may include any regular characters, but not delimiter or white-space characters. Uppercase and lowercase letters are considered distinct: /A and /a are different names. The following examples are valid literal names:

/Name1
  /ASomewhatLongerName
  /A;Name_With-Various***Characters?
  /1.2
  /$$
  /@pattern
  /.notdef





Beginning with PDF 1.2, any character except null (character code 0) may be included in a name by writing its 2-digit hexadecimal code, preceded by the number sign character (#). This syntax is required to represent any of the delimiter or white-space characters or the number sign character itself; it is recommended but not required for characters whose codes are outside the range 33 (!) to 126 (~). The examples shown in the following table are valid literal names in PDF 1.2 and later.

	Literal name
	Result

	/Adobe#20Green
	Adobe Green

	/PANTONE#205757#20CV
	PANTONE 5757 CV

	/paired#28#29parentheses
	paired()parentheses

	/The_Key_of_F#23_Minor
	The_Key_of_F#_Minor

	/A#42
	AB



The length of a name is subject to an implementation limit. The limit applies to the number of characters in the name’s internal representation. For example, the name /A#20B has four characters (/, A, space, B), not six.

Name objects are treated as atomic symbols within a PDF file. Ordinarily, the bytes making up the name are never treated as text to be presented to a user. However, occasionally the need arises to treat a name object as text, such as one that represents a font name.

In such situations, it is recommended that the sequence of bytes (after expansion of # sequences, if any) be interpreted according to UTF-8, a variable-length byte-encoded representation of Unicode in which the printable ASCII characters have the same representations as in ASCII. This enables a name object to represent text in any natural language, subject to the implementation limit on the length of a name.




Cos dictionaries¶

A dictionary object is an associative table containing pairs of objects, known as the dictionary’s entries. The first element of each entry is the key and the second element is the value. The key must be a name. The value can be any kind of object, including other dictionaries and streams. A dictionary entry whose value is null is equivalent to an absent entry.

A dictionary is a table data structure whose elements are object pairs:

	The first element is the key, which is always a name object, a sequence of characters beginning with the forward slash (/) character. No two entries in the same dictionary should have the same key. If a key does appear more than once, its value is undefined.

	The second element is the Cos object representing the value. You can add new key-value pairs, modify existing key-value pairs, or delete existing key-value pairs in a dictionary.



The following is an example of a dictionary:

<< /Name John /Age 27 /AnArray [1 2 3]>>





The value associated with the Name key is the value John. The value for the Age key is 27. And the value for the AnArray key is an array with the values 1, 2, and 3. For information about creating a Cos dictionary, see Creating Cos dictionaries.




Cos streams¶

A stream is a sequence of bytes that can be read a portion at a time. For this reason, objects with potentially large amounts of data, such as images and page descriptions, are represented as streams. A stream consists of a dictionary followed by zero or more bytes bracketed between the keywords stream and endstream. The following example shows the basic syntax of a stream:

dictionary
stream
    …Zero or more bytes…
endstream





The stream keyword should be followed by an end-of-line marker consisting of either a carriage return and a line feed or just a line feed, and not by a carriage return alone. The sequence of bytes that make up a stream is located between the stream and endstream keywords. Streams must be indirect objects and the stream dictionary must be a direct object. (See About direct and indirect objects.)


Note

For more information about streams, see the PDF Reference.










Working with Cos strings¶

This section discusses ways in which you can work with Cos strings. (See Cos strings.)


Creating Cos strings¶

You can use the Acrobat core API to create a CosObj object that is based on a Cos string.

To create a Cos string:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that is based on a Cos string by invoking the CosNewString method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	A character pointer that specifies the string. Cos strings can contain NULL characters.

	The length of the character pointer.






The following code example creates a CosObj that is based on a Cos string. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a new Cos string
char* mystr = "New String";
CosDoc cd = PDDocGetCosDoc(myPDDoc);
CosObj strObj = CosNewString(cd, false, mystr, strlen(mystr));








Retrieving the string value¶

You can retrieve the string value from a CosObj that is based on a Cos string. To retrieve the string value, invoke the CosStringValue method and pass the following arguments:

	A CosObj that is based on a Cos string.

	The address of an ASTCount object that is used to store the string length.



An exception is thrown if the CosObj object that is passed to the CosStringValue method is not based on a Cos string. The following code example expands the previous code example by retrieving the string value by invoking the PDDocGetCosDoc method.

//Create a new Cos string
char* mystr = "New String";
CosDoc cd = PDDocGetCosDoc (myPDDoc);
CosObj strObj = CosNewString(cd,false,mystr,strlen(mystr));


//Retrieve the string value
char* strValue;
ASTCount length;
strValue = CosStringValue(strObj, &length);


//Display the string value
AVAlertNote(strValue);










Working with Cos arrays¶

This section discusses ways in which you can work with Cos arrays.


Creating Cos arrays¶

You can use the Acrobat core API to create a CosObj object that is based on a Cos array. You specify the number of elements that the Cos array stores when you create it. However, you can add elements dynamically as needed. For example, assume that you create a Cos array that stores three elements. If required, you can add a fourth element. An exception is thrown if the CosObj object that is added to the Cos array is a direct object that is already located in another Cos collection object.

	To create a Cos array:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that is based on a Cos array by invoking the CosNewArray method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASTArraySize object that specifies the number of elements.






	Create a CosObj object that stores a value to add to the Cos array. For example, to create a CosObj object that is based on an integer value, invoke the CosNewInteger method and pass the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASInt32 value that specifies the integer value.




	Add the value to the Cos array by invoking the CosArrayPut method and passing the following arguments:

	A CosObj object that represents a Cos array.

	An ASTArraySize object that specifies a 0-based index value.

	A CosObj object that stores the value to add to the array.






The following code example creates a Cos array and adds the values 1, 2, 3, 4, and 5 to it. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a new Cos array
CosObj ArrayObj, IntObj;
CosDoc cd = PDDocGetCosDoc(myPDDoc);
ArrayObj = CosNewArray (cd, false, 5);

for (int i=1; i<=5; i++)
{

//Create a new CosObj representing the integer value
IntObj = CosNewInteger (cd, false, i);


//Store the integer object in the array
CosArrayPut (ArrayObj, i-1, IntObj);
}








Retrieving Cos array values¶

You can use the Acrobat core API to retrieve values from a CosObj object that is based on a Cos array.

To retrieve values from a Cos array:

	Determine the number of elements by invoking the CosArrayLength method. Pass the CosObj object that represents the Cos array as an argument.

	Get the CosObj object that represents an array element by invoking the CosArrayGet method and passing the following arguments:

	The CosObj object that represents the Cos array

	An ASTArraySize object that represents the index of the array element to retrieve






The CosArrayGet method returns a CosObj object that represents the element

	Get the element value. However, you must invoke the method that corresponds to the CosObj object’s data type. If, for example, the Cos array stores integer values, invoke the CosIntegerValue method to obtain the element’s integer value. Pass the CosObj object that represents the element. This method returns the corresponding value. If the CosIntegerValue method is invoked, then an ASInt32 value is returned.



The following code illustrates a user-defined function named GetArrayValues that retrieves the value of each element and displays it in an alert box. Notice that a CosObj that represents a Cos array is passed to the GetArrayValues as its only parameter.

void GetArrayValues(CosObj array)
{
  CosObj IntObj;
  ASInt32 value, i, NumElements;
  char buf[256];


//Determine the number of elements in the array
NumElements = CosArrayLength(array);


//Iterate through the array
for (i=0; i < NumElements; i++)
  {

//Retrieve a specific element
IntObj = CosArrayGet(array, i);


//Convert the CosObj to its ASInt32 value
value = CosIntegerValue (IntObj);


//Display the value
sprintf(buf, "The element value is %d",value);
  AVAlertNote(buf);
  }
}










Working with Cos dictionaries¶

This section discusses ways in which you can work with Cos dictionaries. (See Cos dictionaries.)


Creating Cos dictionaries¶

You can create a CosObj object that is based on a Cos dictionary. Both the key and its value are CosObj objects that you create and add to the Cos dictionary, which is also a CosObj object.

To create a Cos dictionary:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that represents the dictionary by invoking the CosNewDict method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About Cos objects.)

	An ASTArraySize object that specifies the number of dictionary entries (the number of key and value pairs).






The CosNewDict method returns a CosObj object that represents the new Cos dictionary.

	Create a CosObj object that represents a dictionary value. You must invoke a method that corresponds to the value’s data type. For example, to add an integer value, invoke the CosNewInteger method and pass the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASInt32 value that specifies the integer value.




	Place the CosObj object that represents a dictionary value into the dictionary by invoking the CosDictPut method and passing the following arguments:

	A CosObj that represents the dictionary

	An ASAtom object that specifies the key name

	A CosObj object that specifies the dictionary value




	Repeat steps 3 and 4 for each dictionary entry that you want to add.



The following code example creates a Cos dictionary with the following entries: /Key1 1 /Key2. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a Cos dictionary
CosObj Dict, IntObj;
CosDoc cd;


//Get the CosDoc
cd = PDDocGetCosDoc(myPDDoc);


//Make a new dictionary with two entries
Dict = CosNewDict (cd, false, 2);
IntObj = CosNewInteger (cd, false, 1);


//Place the key value pair of /Key1 1 into the dictionary
CosDictPut (Dict, ASAtomFromString ("Key1"), IntObj);
IntObj = CosNewInteger (cd, false, 2);


//Place the key value pair of /Key2 2 into the dictionary
CosDictPut (Dict, ASAtomFromString ("Key2"), IntObj);








Retrieving values from a Cos dictionary¶

You can retrieve a dictionary element value by performing the following steps:

	Get a dictionary key value by invoking the CosDictGet method and passing the following arguments:

	A CosObj object that represents the dictionary.

	An ASAtom object that represents the key name.






The CosDictGet method returns a CosObj object that represents the dictionary value.

	Get the element value. However, you must invoke the method that corresponds to the CosObj object’s data type. If, for example, the Cos array stores integer values, invoke the CosIntegerValue method to obtain the dictionary entry value. Pass the CosObj object that represents the dictionary entry. This method returns the corresponding value. If the CosIntegerValue method is invoked, then an ASInt32 value is returned.



The following code example retrieves the value of a dictionary element whose key is named Key1. The element value is displayed within an alert box.

//Retrieve the value from the dictionary entry whose key is named Key1
CosObj dictEntry;
ASInt32 dicValue;
char buf[256] ;


//Get the element whose key is named Key1
dictEntry = CosDictGet(Dict, ASAtomFromString("Key1"));
dicValue = CosIntegerValue(dictEntry);


//Display the value of the dictionary element
sprintf(buf,"The value of the dictionary element is %d",dicValue);
AVAlertNote(buf);






Note

The Dict object is a CosObj that represents the dictionary. (See Creating Cos dictionaries.)






Querying a Cos dictionary for a key¶

You can use the Acrobat core API to determine whether a specific key-value pair exists. To perform this task, invoke the CosDictKnown method and pass the following arguments:

	A CosObj object that represents the dictionary.

	An ASAtom object that represents the key name.



This method returns an ASBool value that specifies whether the key-value pair exists. If this method returns true, then the key-value pair exists. The following code example queries a dictionary to determine whether a key named Key1 exists.

//Determine whether a key named Key1 exists
ASBool keyExist = CosDictKnown(Dict, ASAtomFromString("Key1"));
if (keyExist == true)
  AVAlertNote("The dictionary contains a key named Key1");
else
  AVAlertNote("The dictionary does not contain a key named Key1");










Working with Cos names¶

This section discusses ways in which you can work with Cos names. (See Cos names.)


Creating Cos names¶

You can use the Acrobat core API to create a CosObj object that is based on a Cos name.

To create a Cos name:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that represents the name by invoking the CosNewName method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASAtom object that represent the name to create.






The CosNewName method returns a CosObj object that represents the new Cos name.

The following code example creates a Cos name with the value Name1. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a Cos name
CosObj nameObj;
CosDoc cd = PDDocGetCosDoc(myPDDoc);
nameObj = CosNewName(cd, false, ASAtomFromString("Name1"));








Retrieving the value of a name object¶

You can retrieve the value of a name object by using the Acrobat core API. For example, assume that you retrieve the value from the Cos name object created in the previous code example. In this situation, the value that is retrieved is Name1.

To retrieve the value from a Cos name object:

	Invoke the CosNameValue method and pass the CosObj that represents the Cos name. This method returns an ASAtom object that represents the name value.

	Invoke the ASAtomGetString method to get a constant character pointer that specifies the Cos name value. Pass the ASAtom object that is returned from the CosNameValue method.



//Create a Cos name
CosObj nameObj;
CosDoc cd = PDDocGetCosDoc(myPDDoc);
nameObj = CosNewName (cd, false, ASAtomFromString ("Name1"));


//Get and display the value of a Cos name object
ASAtom nameVal = CosNameValue(nameObj);
const char * str = ASAtomGetString(nameVal);
AVAlertNote(str);






Note

The return value of the ASAtomGetString method is a constant character pointer, not a character pointer. You will generate a compile error if you omit the const keyword.








Working with Cos streams¶

This section discusses ways in which you can work with Cos streams. (See Cos streams.)

A stream is represented by an ASStm object definition. A data stream can be a buffer in memory, a file, or an arbitrary user-written procedure. When writing or extracting data streams, an ASStm object must be converted to a Cos stream.


Note

Before reading this section, it is strongly recommended that you are familiar with concepts discussed earlier in this chapter, such as Cos arrays and Cos dictionaries.




Creating Cos streams¶

You can create a data stream in memory and then insert the stream into a PDF document page. The following diagram shows the result of a data stream that creates a thin black line segment being inserted into a PDF document.


The following example shows the syntax of a stream that creates a thin line segment:

150 250 m 150 350 l S





In contrast, the following example shows the syntax of a stream that inserts the text Hello There into a PDF document:

BT /F0 1 Tf 24 0 0 24 36 756 Tm 0 Tr 0 g 0 Tc 0 Tw (Hello There) Tj ET






Note

For information about stream syntax, see the PDF Reference.




Creating a stream dictionary¶

Each Cos stream has a stream dictionary that contains a Length entry that indicates how many bytes are used for the stream’s data (if the stream has a filter, the Length entry is the number of bytes of encoded data). A limit of 4096 bytes exists for the Length entry. A stream dictionary also has optional entries that are not discussed in this section. For more information about stream dictionaries, see the PDF Reference

In addition, most filters are defined so that the data is self-limiting; that is, they use an encoding scheme in which an explicit end-of-data (EOD) marker delimits the extent of the data. Finally, streams are used to represent many objects from whose length attributes can be inferred. All of these constraints must be consistent.

For example, an image with 10 rows and 20 columns, using a single color component and 8 bits per component, requires exactly 200 bytes of image data. If the stream uses a filter, there must be enough bytes of encoded data in the PDF file to produce those 200 bytes. An error occurs if the Length entry is too small, if an explicit EOD marker occurs too soon, or if the decoded data does not contain 200 bytes. It is also an error if the stream contains too much data, with the exception that there may be an extra end-of-line marker in the PDF file before the endstream keyword. All streams created in this section have a stream dictionary defined.

For each stream that you want to insert into a PDF document, create a stream dictionary that contains at least the Length entry, as shown in the following example:

<</Length 100>>





To create a stream dictionary with the Length entry defined:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method.

	Create an ASUns32 object that represents the stream length.

	Create a CosObj object that represents the length of the stream by invoking the CosNewInteger method and passing the following arguments:

	A CosDoc object that you created in step 1.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	The ASUns32 object created in step 2 that represents the stream length.






The CosNewInteger method returns a CosObj object that represents the stream length.

	Create a CosObj object that represents the Cos dictionary. (See Creating Cos dictionaries.)

	Set the stream dictionary key and value by invoking the CosDictPutKeyString method and passing the following arguments:

	The CosObj object that you created in step 4 that represents the dictionary.

	A character pointer that specifies the name of the key, which in this situation is Length.

	The CosObj object created in step 3 that specifies the length of the stream.






The following code example creates a stream dictionary. The first part of this code example creates a PDPage object by using an AVDoc object. For information about this application logic, see Creating a PDEContent object.

//Create a PDPage object using the current page
AVDoc avDoc = AVAppGetActiveDoc();
AVPageView pageView = AVDocGetPageView(avDoc);
PDPageNumber pageNum = AVPageViewGetPageNum(pageView);
PDDoc pdDoc = AVDocGetPDDoc(avDoc);
PDPage pdPage = PDDocAcquirePage(pdDoc, pageNum);


//Use the PDPage object to get the CosDoc object
CosDoc cd = PDDocGetCosDoc(PDPageGetDoc(pdPage));


//Define a stream to draw a line
char buf [500];
sprintf(buf,"150 250 m 150 350 l S");


//Get the stream length
ASUns32 streamLength = (ASUns32)strlen(buf);


//Create a CosObj object that represents the stream length
CosObj LengthEntry = CosNewInteger(cd, false,streamLength);


//Create a CosObj that represents a stream dictionary

//and sets its key-value pairs
CosObj AttrDict = CosNewDict(cd, false, 5);
char *Length_KStr = "Length";
CosDictPutKeyString(AttrDict, Length_KStr, LengthEntry);


//Determine if the stream dictionary is valid
if (CosObjEqual (AttrDict, CosNewNull ()) == true)
{
  AVAlertNote ("The attributes dictionary could not be created.");
  return;
}






Note

This code example creates a CosObj object named AttrDict that represents a stream dictionary.






Inserting a Cos stream into a PDF document¶

When inserting a stream into a PDF document, ensure that the stream is valid; otherwise, a run-time error occurs. This section explains how to create a stream that draws a thin black line segment and then inserts the stream into the current PDF page.

To insert a stream into the current PDF document page:

	Create a PDPage object that represents the current PDF page. (See Creating a PDEContent object.)

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method.

	Define the stream that draws a thin black line segment. You can populate a character array with a stream by invoking the sprintf method.

	Create an ASUns32 object that represents the stream length.

	Create a CosObj object that represents the stream dictionary. (See Creating a stream dictionary.)

	Read the stream into memory by invoking the ASMemStmRdOpen method and passing the following arguments:

	A character pointer that contains the data stream

	An ASUns32 object that specifies the stream length






This method returns an ASStm object that represents an in-memory data stream.

	Create a new Cos stream that is based on data located in the ASStm object by invoking the CosNewStream method and passing the following arguments:

	A CosDoc object that specifies the PDF document in which the Cos stream is inserted (pass the CosDoc object created in step 2).

	An ASBool object that specifies whether the Cos stream is an indirect object. Because all streams are indirect objects, this argument must be set to true.

	An ASStm object that contains the stream data (pass the ASStm object created in step 6).

	A CosStreamStartAndCode object that specifies the byte offset from which data reading starts. You can pass 0 to ensure that data reading starts at the beginning of the stream.

	An ASBool object that specifies whether the data is encoded using filters specified in the stream dictionary before it is written to the Cos stream.

	A CosObj object that represents the stream dictionary (pass the CosObj object created in step 5).

	A CosObj object that represents the parameters that are used by the encoding filter if the source data is encoded before it is written to the file. If encoding parameters are not required, this value is ignored. For information about encoding filters, see the PDF Reference

	A CosByteMax object that specifies the amount of data read from the source. If this value is -1, data is read from the source until it reaches the end of the stream.






The CosNewStream method returns a CosObj object that represents the Cos stream.

	Replace the contents of the specified page with the Cos stream by invoking the PDPageAddCosContents method and passing the following arguments:

	A PDPage object that represents the current page of the PDF document (pass the PDPage object created in step 1).

	A CosObj object that contains the Cos stream.






The following code example creates a Cos stream and inserts it into the current page of a PDF document.

//Declare local variables used in this code example
CosDoc cd;
CosObj PageStrm, LengthEntry, AttrDict;
CosObj EncodeParms = CosNewNull();
ASStm OpenedStream;
char buf [500];


//Create a PDPage object using the current page
AVDoc avDoc = AVAppGetActiveDoc();
AVPageView pageView = AVDocGetPageView(avDoc);
PDPageNumber pageNum = AVPageViewGetPageNum(pageView);
PDDoc pdDoc = AVDocGetPDDoc(avDoc);
PDPage pdPage = PDDocAcquirePage(pdDoc, pageNum); // acquire current page


//Use the PDPage object to create a CosDoc object
cd = PDDocGetCosDoc(PDPageGetDoc(pdPage));


//Define a stream that creates a thin line segment
sprintf(buf,"150 250 m 150 350 l S");


//Get the stream length
ASUns32 streamLength = (ASUns32)strlen(buf);


//Create a CosObj object that represents the stream length
LengthEntry = CosNewInteger(cd, false,streamLength);


//Create a CosObj that represents a stream dictionary

//and set it key-value pairs
AttrDict = CosNewDict(cd, false,5);
char *Length_KStr = "Length";
CosDictPutKeyString(AttrDict, Length_KStr, LengthEntry);


//Determine if the stream dictionary is valid
if (CosObjEqual (AttrDict, CosNewNull ()) == true)
{
  AVAlertNote ("The stream dictionary could not be created");
  return;
}

//Read the stream into memory by invoking the ASMemStmRdOpen method
OpenedStream = ASMemStmRdOpen(buf,streamLength);

DURING


//Create a new Cos stream using data from the ASStm object
//PageStrm = CosNewStream(cd, true, OpenedStream, 0,
   false, // StmDataIsNotDecoded
   AttrDict, //The stream dictionary
   EncodeParms, -1);


//Close the stream
ASStmClose(OpenedStream);

HANDLER
AVAlertNote ("Trying to create new CosStream");
CosObjDestroy (AttrDict);
ASStmClose (OpenedStream);
return;
END_HANDLER


//Completely replace the contents of the specified page with newContents
PDPageAddCosContents (pdPage, PageStrm);






Caution

If you execute this code example without having a PDF document open, you will cause an Adobe Reader or Acrobat run-time error. The run-time error occurs because this code example creates a PDPage object that is based on the current PDF document page.








Populating a PDF with a content stream¶

This section explains how to use the Acrobat core API to create a new PDF document, insert a page into the document, and populate the page with a Cos content stream that inserts the text Hello There. When inserting a content stream into a PDF document, in addition to creating a stream dictionary, you must also create a resource dictionary and a page dictionary. A resource dictionary defines attributes such as the font that a content stream uses and a page dictionary defines attributes such as the page’s height and width. For information about these dictionaries, see the PDF Reference

The following example shows the resource dictionary that is created in this section.

4 0 obj
<<
/Font << /F0 5 0 R >>
/ProcSet 6 0 R
>>
endobj





The following example shows the font descriptor that is created in this section.

5 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F0
/BaseFont /Courier
/Encoding /WinAnsiEncoding
>>
endobj





The following example shows the Procset resource created in this section.

This is a procset resource.
6 0 obj
[
/PDF /Text
]
endobj





The following example shows the page dictionary that is created in this section.

This is the page dictionary.
7 0 obj
<<
/Type /Page
/MediaBox [ 0 0 612 792 ]
/Parent 2 0 R
/Resources 4 0 R
/Contents 8 0 R
>>
endobj





The following diagram shows the PDF document that is created in this section.


To create a PDF document and populate it with a Cos content stream:

	Define the media box rectangle used in the PDF document’s page.



//ASFixedRect MedBox;
  MedBox.left = ASInt32ToFixed (0);
  MedBox.top = ASInt32ToFixed (792);
  MedBox.right = ASInt32ToFixed (612);
  MedBox.bottom = ASInt32ToFixed (0);





	Define the stream that is written to the PDF document page, as shown in the following example.



char* StreamBuf = (char*)"BT /F0 1 Tf 24 0 0 24 36 756 Tm 0 Tr 0 g 0 Tc 0 Tw
  (Hello There) Tj ET";





	Create a PDDoc object that represents the new document by invoking the PDDocCreate method. After the document is created, at least one page must be added before Acrobat or Adobe Reader can display the document.



PDDoc NewDoc = PDDocCreate ();





	Create a PDPage object that represents the page by invoking the PDDocCreatePage method and passing the following arguments:

	The PDDoc object that you created.

	The PDBeforeFirstPage enum value that specifies where to place the page.

	The ASFixedRect object that defines the media box rectangle.






This method returns a PDPage object that represents the new page.

	Create a CosObj object that represents a resource dictionary. In the following code example, a resource dictionary is created in a user-defined function named SetResourceForPage.

	Set the page’s resource key. In the following code example, the page’s resource’s key is set in a user-defined function named CreateResourceDicts.

	Add a Cos stream to the page. In the following code example, a Cos stream is added to the page in a user-defined function named AddStreamToPage.

	Open the PDF document in Adobe Reader or Acrobat. In the following code example, this task occurs in the user-defined function named MakeTheFile.

	Save the PDF document. In the following code example, this task occurs in the user-defined function named MakeTheFile.



The following code example represents an entire C source file that creates a PDF document and populates it with a Cos content stream. This source file is made up by various user-defined functions. To make it easier to view these functions, all function signatures are bolded. The entry point to this source file is the MakeTheFile function. You can invoke the MakeTheFile function from a menu item or toolbar button to execute this code example.

#include "ascalls.h"
#include "avcalls.h"
#include "avcalls.h"
#include "coscalls.h"
#include "pdcalls.h"
#include "ascalls.h"
#include "corcalls.h"
#include "dos.h"
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

//Declare global variables
CosObj PageStrm; /* To hold the newly created Cos stream */
CosObj AttrDict; /* As returned by CreateAttribsDict */
CosObj EncodeDict;

//Used to specify what filters are used to encode the stream if used for output.
CosObj ResDict; /* Resource dictionary for the page */
CosObj FontDictObj;
CosObj FontDict;
CosObj procArray;

//Set the page's resource key. Return true if everything is valid, else false.

ASBool SetResourceForPage (PDPage page)

{
CosObj PageCosObj;

//Make sure that the page is valid
if (!page)
  return false;

DURING

//Get a CosDoc object by using the PDPage page passed to this object
PageCosObj = PDPageGetCosObj(page);

  if (CosDictKnown (PageCosObj, ASAtomFromString ("Resources") == true))
      CosObjDestroy (CosDictGet (PageCosObj, ASAtomFromString ("Resources")));


//Place the ResDict object into the page's Resource Dictionary
CosDictPut (PageCosObj, ASAtomFromString ("Resources"), ResDict);
HANDLER
  return false;
END_HANDLER
return true;
} /* end of SetResourceForPage*/

//Create the font's resources. Return true if all is valid, else false.
//Creates the required font and proc set dictionaries; then creates the global resource dictionary for the PDF page
ASBool CreateResourceDicts (CosDoc cd)

{
DURING
  ResDict = CosNewDict (cd, true, 10);

HANDLER
  AVAlertNote("Trying to create the resource dictionary.");
  return false;
  END_HANDLER

DURING
  FontDictObj = CosNewDict (cd, true, 5);

HANDLER
  AVAlertNote ("Trying to create the font's dictionary.");
  CosObjDestroy (ResDict);
  return false;
END_HANDLER


/* Create this font descriptor dictionary.

   <<
   /Type /Font
   /Subtype /Type1
   /Name /F0
   /BaseFont /Courier
   /Encoding /WinAnsiEncoding
   >>
*/
DURING
  CosDictPut (FontDictObj, ASAtomFromString ("Type"),
  CosNewName (cd, false, ASAtomFromString ("Font")));
  CosDictPut (FontDictObj, ASAtomFromString ("Subtype"),
  CosNewName (cd, false, ASAtomFromString ("Type1")));
  CosDictPut (FontDictObj, ASAtomFromString ("Name"),
  CosNewName (cd, false, ASAtomFromString ("F0")));
  CosDictPut (FontDictObj, ASAtomFromString ("BaseFont"),
  CosNewName (cd,false, ASAtomFromString ("Courier")));
  CosDictPut (FontDictObj, ASAtomFromString ("Encoding"),
  CosNewName (cd,false, ASAtomFromString ("WinAnsiEncoding")));
HANDLER
  AVAlertNote("Trying to add key-value pairs to the Font descriptor dictionary.");
  CosObjDestroy (FontDictObj);
  return false;
END_HANDLER
DURING
  FontDict = CosNewDict (cd, false, 2);
HANDLER
  AVAlertNote ("Trying to create page's resource dictionary.");
  CosObjDestroy (FontDictObj);
return false;
END_HANDLER

   /* Add entries to the page's resource dictionary.
      <<
      /Font << /F0 5 0 R >>
      /ProcSet 6 0 R
      >>
   */

DURING

   /* Add /Font key-value pair to resource dictionary */
      CosDictPut (FontDict, ASAtomFromString ("F0"), FontDictObj);
      CosDictPut (ResDict, ASAtomFromString ("Font"), FontDict);
      HANDLER
      AVAlertNote  ("Trying to add key-value pairs to the page's resource dict.");
      CosObjDestroy (FontDictObj);
      CosObjDestroy (FontDict);
      CosObjDestroy (ResDict);
      return false;
      END_HANDLER

   /* Create the following proc set resource array.
   ** [
   ** /PDF /Text
   ** ]
   */
DURING
  procArray = CosNewArray (cd, true, 5);
HANDLER
  AVAlertNote  ("Trying to create proc set array.");
  CosObjDestroy (FontDictObj);
  CosObjDestroy (FontDict);
  CosObjDestroy (ResDict);
  return false;
END_HANDLER

DURING
CosArrayPut (procArray, 0, CosNewName (cd, false, ASAtomFromString ("PDF")));
CosArrayPut (procArray, 1, CosNewName (cd, false, ASAtomFromString ("Text")));

/*Place the proc set key-value pair into the page's resource dictionary.*/

CosDictPut (ResDict, ASAtomFromString ("ProcSet"), procArray);
HANDLER
  CosObjDestroy (FontDictObj);
  CosObjDestroy (FontDict);
  CosObjDestroy (ResDict);
  CosObjDestroy (procArray);
  return false;
END_HANDLER
return true;
}

// Create and return the stream's dictionary that defines the Length attribute
CosObj CreateAttribsDict(CosDoc Doc, ASInt32 Len)

{
//Declare local variables
CosObj Dict; /* Holds newly created dictionary */
ASAtom Key; /* Key used to retrieve CosObj in dictionary */
CosObj Value; /* Assigned, then added to dictionary */
CosObj DecodeArray;

//Create the stream dictionary
Dict = CosNewDict(Doc, false, 10);
Key = ASAtomFromString("Length");
Value = CosNewInteger(Doc, false, Len);
CosDictPut(Dict, Key, Value);
return Dict;
}

//Add stream to page. Return false if there are problems
ASBool AddStreamToPage (PDPage page, char* StreamBuf, ASInt32 StreamBufLen)

{

//Declare local variables
CosDoc cd;
ASStm Stm=NULL;
CosObj PageStrm;
CosObj EncodeParms = CosNewNull();

DURING

//Create the CosDoc object
cd = PDDocGetCosDoc (PDPageGetDoc (page));

HANDLER
  AVAlertNote("Unable to get CosDoc");
  return false;
END_HANDLER


//Retrieve the Attributes dictionary
AttrDict = CreateAttribsDict (cd, StreamBufLen);

if (CosObjEqual (AttrDict, CosNewNull ()) == true){
  AVAlertNote("Not making stream. Attribs dict not created.");
  return false;
}

//Read the stream into memory by invoking the ASMemStmRdOpen method
Stm = ASMemStmRdOpen (StreamBuf, StreamBufLen);
if (!Stm){
  AVAlertNote ("Unable to open data stream to create content stream.");
  return false;
}
DURING

//Creates a new Cos stream using data from the ASStm object
PageStrm = CosNewStream(cd, true, Stm, -1,
  false,
  AttrDict, /* attributesDict */
  EncodeParms,
  -1);

ASStmClose (Stm);

HANDLER
  AVAlertNote ("Trying to create new CosStream.");
  CosObjDestroy (AttrDict);
  ASStmClose (Stm);
  return false;
END_HANDLER


//Add the content stream to the page
PDPageAddCosContents (page, PageStrm);
return true;
} /* end of AddStreamToPage */


//Create the new PDF document
void MakeTheFile (void)

{

//Declare local variables
volatile PDDoc NewDoc = NULL;
volatile PDPage NewPage;
ASFixedRect MedBox;
ASInt32 PageCount = 0;
char* StreamBuf = NULL;
int StreamBufLen = 0;
ASBool result ;

//Set up the page's media box.
MedBox.left = ASInt32ToFixed (0);
MedBox.top = ASInt32ToFixed (792);
MedBox.right = ASInt32ToFixed (612);
MedBox.bottom = ASInt32ToFixed (0);

//Define a stream to set the text matrix and write out the text
StreamBuf = (char*)"BT /F0 1 Tf 24 0 0 24 36 756 Tm 0 Tr 0 g 0 Tc 0 Tw (Hello There) Tj ET";

//Get the length of StreamBufLen - this is where is it determined
StreamBufLen = strlen (StreamBuf);

DURING

//Create a PDDoc object
NewDoc = PDDocCreate();
  if (NewDoc) {

//Invoke the PDDocCreatePage method
//  NewPage = PDDocCreatePage(NewDoc, PDBeforeFirstPage, MedBox);
      if (!NewPage)
          ASRaise (0);

//Invoke CreateResourceDicts
//  if (CreateResourceDicts(PDDocGetCosDoc(NewDoc)) == false)
          ASRaise (0);


//Invoke SetResourceForPage method
result = SetResourceForPage(NewPage);

// Invoke AddStreamToPage
result = AddStreamToPage (NewPage, StreamBuf, StreamBufLen);
  if (result == false)
      ASRaise (0);

  PDPageRelease (NewPage);
}
HANDLER
  AVAlertNote ("Problem creating document.");
  if (NewPage) PDPageRelease (NewPage);
  if (NewDoc) PDDocClose (NewDoc);
  return;
END_HANDLER
DURING


//Open the new doc
AVDocOpenFromPDDoc(NewDoc, NULL);


//Save the PDF document to the root of C and name it cosPDFDocument.pdf
PDDocSave(NewDoc, PDSaveFull | PDSaveLinearized,ASPathFromPlatformPath

("C:cosPDFDocument.pdf"), NULL, NULL, NULL);

HANDLER
  AVAlertNote ("Cannot open new document.");
END_HANDLER
}
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