

	
	 	

 Acrobat and PDFL Developer Guides

 Acrobat-PDFL SDK Documentation

 	Acrobat and PDFL SDK Documentation	Master search and TOC
	Documentation
	Related specifications	PDF Reference
	Other formats
	12.x Legacy docs
	11.x and earlier documentation

	Acrobat-PDFL SDK: Overview	Acrobat-PDFL SDK: Overview	Developer support
	Licensing and distribution	Acrobat Reader
	Additional resources
	Technical and licensing limitations

	Samples provided with the Acrobat SDK
	Developing for Acrobat Reader	Acrobat vs. Reader
	Acrobat Reader plug-in guidelines
	Reader enabled plugins

	SDK technologies and options	JavaScript
	Plug-ins
	JavaScript vs. plugins: pros and cons
	Interapplication communication
	Viewing PDF documents from an external application
	Controlling Acrobat from an external application
	Adobe PDF Library

	Sandbox Broker Extensibility	Extending broker APIs at run time
	Components	Plugin (PI)
	Sandbox process
	Broker process (The broker process running with full rights)
	Plugin broker (The plugin broker process that extends the broker APIs at runtime)
	SandboxHFT (Public HFT provided by sandbox for broker extensibility)
	IPC channel between plugin and plugin broker, 1->6->4
	simple-ipc-lib and SandboxPISDK
	Building a plug-in
	Building a plugin’s broker process

	Handshake between plugin and plugin broker
	Implement CrossCalls (make calls from plug-in to plug-in’s broker process)	Changes required in the plugin (client)
	Changes required in the plugin’s broker (server)

	PDF File Creation	Creating PDF files from an authoring application	Acrobat Distiller
	Automated creation of PDF documents from Windows
	Automatic generation of advanced Acrobat features
	Attaching a native document to a PDF file
	Batch processing with Distiller
	Tagged PDF documents

	Creating PDF files using plug-ins or JavaScript	Empty PDF files
	PDF files from multiple files

	Creating PDF files without using Acrobat

	Working with PDF Features	Navigation in PDF documents	Bookmarks
	Thumbnails
	Links
	Actions for special effects

	PDF page manipulation	Page content
	Document logical structure
	Other ways of modifying PDF documents

	Watermarks
	Spell-checking
	Multimedia
	Printing PDF files
	Embedded fonts

	User Interface Modifications	Menu items and menus	Menu items
	Menus

	Toolbars	Items on a toolbar
	Toolbar creation

	Customization of Acrobat Help	About dialog box and splash screen
	Plug-in help files

	Annotations and Online Collaboration	About annotations	Annotations and JavaScript
	Annotations with plug-ins or IAC

	New annotation types

	XML and the Acrobat SDK	Adobe XML architecture	XML forms model
	XML templates
	Extensible Metadata Platform

	SOAP and web services
	Conversion of PDF documents to XML format
	XML-based information

	Forms and the Acrobat SDK	Workflows for forms
	About XML forms
	About Acrobat forms	Forms API
	OLE automation

	Metadata, Accessibility, and PDF Layers	Metadata	Extensible Metadata Platform (XMP)
	Adobe XMP Toolkit

	Accessibility
	PDF layers	Creation of layered PDF files
	What you can do with layers

	Searching and Indexing	Search plug-in
	Indexes and the Catalog plug-in

	Frequently Asked Questions	Forms	What are the requirements for using Acrobat forms?
	What is the FDF Toolkit?

	PDF documents	What ActiveX solutions are available?
	Visual Basic .NET and Visual C# .NET
	What API methods are available to modify PDF documents?
	Can I modify PDFs without a C programming background?
	How can I extract text?
	How can I display a PDF in an external application window?
	Using Acrobat to view PDFs in your own application
	Are multibyte font PDF documents supported by the Acrobat SDK?
	How are security and encryption provided in PDFs?

	Full-text search	What tools are available with Acrobat for full-text search?
	What tools are available for extracting and highlighting text?
	How do I communicate with the Acrobat Search plug-in?
	How do I create custom DocInfo fields for searching?

	How do I use the Windows command line?
	How can I customize the Acrobat installer?

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Plugin Development	Acrobat-PDFL SDK: Developing Plugins	About plugins
	About the Acrobat core API	Acrobat Viewer layer
	Portable Document layer
	Acrobat Support layer
	Cos layer
	Platform-specific methods

	Acrobat core API objects	File object interrelationships
	Document object interrelationships

	Acrobat core API methods
	Data types	Scalar types
	Simple types
	Complex types
	Opaque types
	Cos types

	About PDF Library and plugin applications	Manipulating Acrobat and Adobe Reader
	Displaying a PDF document in an external window
	Indexed searching
	Modifying file access
	Creating new annotation types
	Dynamically adding text to PDF documents

	Understanding your target application	Rights-enabled PDF documents
	Adobe Reader plugins

	Registering plugins for use by the plugin finder	PDF dictionary extensions

	Understanding Plugins	Plugin loading and initialization	Handshaking
	Exporting HFTs
	Importing HFTs and registering for notifications
	Initialization
	Unloading
	Summarizing a plugin’s life cycle

	Using callback functions
	Notifications
	Handling events	Mouse clicks
	Adjust cursor
	Key presses

	Using plugin prefixes	Obtaining a developer PDF name prefix
	Using a developer prefix

	Modifying the Acrobat or Adobe Reader user interface	Adding or removing menus and menu items
	Modifying toolbars
	Controlling the About box and splash screen
	Creating help files
	User interface guidelines

	Acquiring and releasing objects
	Debugging plugins
	Page view layers
	Minimizing screen redrawing
	Storing private data in PDF files
	Exporting data from PDF document objects

	Creating Plugin and PDF Library Applications	Working with platform-specific techniques	About platform-dependent data
	Portability techniques
	Windows techniques
	Mac OS techniques

	Creating a sample plugin	Including Acrobat SDK library files
	Adding the PIMain source file
	Adding application logic
	Compiling and building your plugin

	Creating a sample PDF Library application	Contents of the PDF Library SDK
	Developing applications with the Adobe PDF Library
	Initialization and termination
	Multithreading

	Upgrading existing plugins	Detecting supported APIs

	Migrating PDFL apps to Xcode

	Inserting Text into PDF Documents	Creating a new PDF document
	Creating a new page
	Creating a container
	Acquiring fonts
	Creating a PDEGraphicState object
	Creating an ASFixedMatrix object
	Inserting text
	Saving the PDF document
	Examining a PDFL app source file

	Working with Documents and Files	Opening PDF documents
	Opening a PDF in an external window	Creating a Window
	Defining the parameters for an external window
	Creating a handler for an external window
	Displaying an open dialog box
	Displaying a PDF in a window

	Determining the PDF version	PDF version
	PDF version extensions
	Setting the extension level of a document
	Getting the extension level of a document

	Bridging core API layers	Creating a PDDoc object
	Creating a PDDoc object for an open PDF
	Accessing non-PDF files

	Printing documents
	Working with the PDF/X format

	Creating Menus and Menu Commands	About menus	About AVmenubar typedefs
	About AVMenu typedefs
	About AVMenuItem typedefs

	Adding menu commands to menus	Adding a menu command to an existing menu
	Adding a menu command to a new menu

	Creating menu callback functions
	Determining if a menu item can be executed

	Creating Toolbars and Buttons	About toolbars	About AVToolBar typedefs
	About AVToolButton typedefs

	Retrieving toolbars
	Creating toolbar buttons	Setting help text for a button
	Setting label text
	Creating a sub-menu for a button

	Retrieving existing toolbar buttons
	Attaching a button to a toolbar
	Exposing a button in a web browser
	Removing a button from a toolbar
	Creating toolbar button callback functions

	Creating Annotations	Working with text annotations	Creating text annotations
	Retrieving existing annotations
	Modifying text annotations

	Working with redaction annotations	Creating a redaction annotation
	Modifying an existing redaction annotation
	Applying redaction annotations (removing redacted content)

	Working with Bookmarks	About bookmarks
	Creating bookmarks	Defining bookmark actions
	Removing bookmark actions
	Opening and closing bookmarks

	Retrieving bookmarks	Retrieving the root bookmark
	Retrieving a specific bookmark
	Retrieving all bookmarks

	Deleting bookmarks

	Working with Page Views and Contents	About page coordinates
	About page views
	Displaying page views
	Modifying page contents	Creating a PDEContent object
	Accessing page contents
	Determining page element types
	Modifying text elements

	Working with Words	About searching for words	About PDWord typedefs
	About PDWordFinder typedefs

	Creating a PDWordFinder object
	Extracting and displaying words
	Highlighting words

	Creating Handlers	About handlers
	Action handlers
	Annotation handlers
	AVCommand handlers	Creating an AVCommand handler
	Invoking AVCommands
	Configuring AVCommands
	Running commands
	Exposing AVCommands to the batch framework

	File format conversion handlers
	File specification handlers
	Selection servers
	Tool callbacks
	Window handlers
	File systems
	Progress monitors
	Transition handlers
	Adding message handling

	Registering for Event Notifications	Registering event notifications
	Unregistering event notifications

	Working with Document Security	About document security
	About security handlers	Adding a security handler
	Opening a secured file
	Saving a secured file

	Setting security for a document	Saving a file with an encryption dictionary
	Opening an encrypted file

	Working with Unicode Paths	About Unicode paths
	Creating Unicode file path application logic
	Retrieving Unicode path values	Creating an ASFileSys object
	Creating an ASFileSys object that supports Unicode paths

	Working with Host Function Tables	About host function tables
	Exporting host function tables	Creating HFT methods
	Creating HFT method definitions
	Creating HFT callback functions
	Creating new Host Function Tables
	Examining HFT header and source files

	Importing an existing HFT
	Invoking HFT methods
	Replacing HFT methods
	Migrating non-HFT PDF Library applications to HFT applications

	Working with Cos Objects	About Cos objects	About direct and indirect objects
	About Cos object types

	Working with Cos strings	Creating Cos strings
	Retrieving the string value

	Working with Cos arrays	Creating Cos arrays
	Retrieving Cos array values

	Working with Cos dictionaries	Creating Cos dictionaries
	Retrieving values from a Cos dictionary
	Querying a Cos dictionary for a key

	Working with Cos names	Creating Cos names
	Retrieving the value of a name object

	Working with Cos streams	Creating Cos streams
	Populating a PDF with a content stream

	Working with 3D Annotations	Creating 3D annotations
	Adding 3D data to an annotation	Creating the 3D annotation dictionary entries
	Specifying the 3D stream
	Setting the default view
	Setting the annotation appearance
	Setting the activation dictionary

	Parsing and Creating PRC Files	Working with the Acrobat 3D API	Versions
	Compatibility with different PRC format versions
	Compatibility between the Acrobat 3D Library and the Acrobat 3D API
	Requirements
	Data types, naming conventions, and character encoding
	Structured and recursive nature of PRC parsing

	Implementing external linking in your plugin	Implementing external linking

	Parsing a PRC file	Handling errors
	Copying the embedded PRC file to a separate file
	Initializing the Acrobat 3D API
	Parsing structure PRC entities
	Parsing tessellation PRC entities
	Parsing topology PRC entities
	Parsing PRC entities that specify graphics
	Parsing attributes that appear in an entity base
	Terminating the interface with the Acrobat 3D API

	Creating a PRC file that uses boundary representation	Error handling
	Creating a model file entity and exporting it to a physical file
	Creating structure PRC entities
	Creating representation item PRC entities
	Creating topology PRC entities
	Creating geometry PRC entities
	Defining root-level attributes for a PRC entity
	Creating a 3D annotation that references the PRC file

	Creating a tessellation entity for representing faceted objects	Create the tessellation base data
	Create the tessellation facet data

	Handling Exceptions	Creating exception handlers
	Returning a value from an exception handler
	Raising exceptions
	Exception handling scenarios	Using goto statements
	Using nested exception handlers
	Using register variables

	Working with Acrobat Extended APIs	Search extended API
	Catalog extended API
	PDF Consultant and Accessibility Checker extended API	Acrobat agents
	Reclassifying and revisiting
	Agent architecture
	How the consultant works
	Important issues for consultant development
	Importing the consultant HFTs into a plugin
	Creating and destroying consultants
	Registering agents with consultants
	Starting the consultant
	Consultant object type identification
	Creating an agent class
	Creating agent constructors
	Recognizing objects of interest
	Post processing stage

	Digital signature extended API	The PubSec layer
	Digital signature components
	Digital signature scenarios
	Initializing the digital signature plugin
	Understanding the process

	Forms extended API
	Weblink extended API	Weblink services
	Writing a custom driver

	Spelling extended API
	AcroColor extended API	Color conversion operations

	PDF Optimizer API

	Creating an Adobe Reader Plugin	Configuring preprocessor definitions
	Creating the public and private key pairs
	Enabling the plugin for Adobe Reader	Plugin to be Notarized on MacOS

	Troubleshooting an Adobe Reader plugin	Plugin appears to be ignored by Adobe Reader
	Adobe Reader error messages

	Reader Plugins	Reader enablement
	APIs available for Adobe Reader

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Interapplication Communication	Developing for Interapplication Communication	About the API object layers	Object reference syntax
	Objects in the Acrobat application layer
	Objects in the portable document layer

	Plugins for extending the IAC interfaces
	Developing for Acrobat Reader
	DDE messages
	Apple events

	Using OLE	OLE capabilities in Acrobat	On-screen rendering
	Remote control of Acrobat
	PDF browser controls

	Development environment considerations	Environment configuration
	Necessary C knowledge

	Using the Acrobat OLE interfaces	About the CAcro classes
	About the COleDispatchDriver class
	Using COleDispatchDriver objects and methods

	Using the JSObject interface	Adding a reference to the Acrobat type library
	Creating a simple application
	Working with annotations
	Spell-checking a document
	Tips for translating JavaScript to JSObject

	Other development topics	Synchronous messaging
	MDI applications
	Event handling in child windows
	Determining if an Acrobat application is running
	Exiting from an application

	Summary of OLE objects and methods

	Using DDE
	Using Apple Events
	OLE Automation	AcroExch.App	Methods
	CloseAllDocs
	Exit
	GetActiveDoc
	GetActiveTool
	GetAVDoc
	GetFrame
	GetInterface
	GetLanguage
	GetNumAVDocs
	GetPreferenceEx
	Hide
	Lock
	Minimize
	Maximize
	MenuItemExecute
	MenuItemIsEnabled
	MenuItemIsMarked
	MenuItemRemove
	Restore
	SetActiveTool
	SetFrame
	SetPreference
	SetPreferenceEx
	Show
	ToolButtonIsEnabled
	ToolButtonRemove
	Unlock
	UnlockEx

	AcroExch.AVDoc	Methods
	BringToFront
	ClearSelection
	Close
	FindText
	GetAVPageView
	GetFrame
	GetPDDoc
	GetTitle
	GetViewMode
	IsValid
	Maximize
	Open
	OpenInWindow
	OpenInWindowEx
	PrintPages
	PrintPagesEx
	PrintPagesSilent
	PrintPagesSilentEx
	SetFrame
	SetTextSelection
	SetTitle
	SetViewMode
	ShowTextSelect

	AcroExch.AVPageView	Methods
	DevicePointToPage
	DoGoBack
	DoGoForward
	GetAperture
	GetAVDoc
	GetDoc
	GetPage
	GetPageNum
	GetZoom
	GetZoomType
	Goto
	PointToDevice
	ReadPageDown
	ReadPageUp
	ScrollTo
	ZoomTo

	AcroExch.HiliteList	Add

	AcroExch.PDAnnot	Methods
	GetColor
	GetContents
	GetDate
	GetRect
	GetSubtype
	GetTitle
	IsEqual
	IsOpen
	IsValid
	Perform
	SetColor
	SetContents
	SetDate
	SetOpen
	SetRect
	SetTitle

	AcroExch.PDBookmark	Methods
	Destroy
	GetByTitle
	GetTitle
	IsValid
	Perform
	SetTitle

	AcroExch.PDDoc	Methods
	AcquirePage
	ClearFlags
	Close
	Create
	CreateTextSelect
	CreateThumbs
	CropPages
	DeletePages
	DeleteThumbs
	GetFileName
	GetFlags
	GetInfo
	GetInstanceID
	GetJSObject
	GetNumPages
	GetPageMode
	GetPermanentID
	InsertPages
	MovePage
	Open
	OpenAVDoc
	ReplacePages
	Save
	SetFlags
	SetInfo

	AcroExch.PDPage	Methods
	AddAnnot
	AddNewAnnot
	CopyToClipboard
	CreatePageHilite
	CreateWordHilite
	CropPage
	Draw
	DrawEx
	GetAnnot
	GetAnnotIndex
	GetDoc
	GetNumAnnots
	GetNumber
	GetRotate
	GetSize
	RemoveAnnot
	SetRotate

	AcroExch.PDTextSelect	Methods
	Destroy
	GetBoundingRect
	GetNumText
	GetPage
	GetText

	AcroExch.Point	X
	Y

	AcroExch.Rect	Bottom
	Left
	Right
	Top

	AcroExch.Time	Date
	Hour
	Millisecond
	Minute
	Month
	Second
	Year

	AxAcroPDFLib.AxAcroPDF	Methods
	GetVersions
	GoBackwardStack
	GoForwardStack
	GotoFirstPage
	GotoLastPage
	GotoNextPage
	GotoPreviousPage
	LoadFile
	Print
	PrintAll
	PrintAllFit
	PrintPages
	PrintPagesFit
	PrintWithDialog
	SetCurrentHighlight
	SetCurrentPage
	SetLayoutMode
	SetNamedDest
	SetPageMode
	SetShowScrollbars
	SetShowToolbar
	SetView
	SetViewRect
	SetViewScroll
	SetZoom
	SetZoomScroll
	Src

	DDE Messages	AppExit
	AppHide
	AppShow
	CloseAllDocs
	DocClose
	DocDeletePages
	DocFind
	DocGoTo
	DocGoToNameDest
	DocInsertPages
	DocOpen
	DocPageDown
	DocPageLeft
	DocPageRight
	DocPageUp
	DocPrint
	DocReplacePages
	DocSave
	DocSaveAs
	DocScrollTo
	DocSetViewMode
	DocZoomTo
	FileOpen
	FileOpenEx
	FilePrint
	FilePrintEx
	FilePrintSilent
	FilePrintSilentEx
	FilePrintTo
	FilePrintToEx
	FullMenus
	HideToolbar
	MenuitemExecute
	ShortMenus
	ShowToolbar

	Apple Event Objects and Apple Events	Objects	annotation
	application
	AVPageView
	bookmark
	conversion
	EPS Conversion
	Link Annotation
	menu
	menu item
	PDAnnot
	PDBookMark
	PDLinkAnnot
	PDPage
	PDTextAnnot
	PDF Window
	PostScript Conversion
	Text Annotation

	Required suite events	open
	print
	quit
	run

	Core suite events	close
	count
	delete
	exists
	get
	make
	move
	open
	quit
	save
	set

	Acrobat application events	bring to front
	clear selection
	close all docs
	create thumbs
	delete pages
	delete thumbs
	execute
	find next note
	find text
	get info
	go backward
	go forward
	goto
	goto next
	goto previous
	insert pages
	is toolbutton enabled
	maximize
	perform
	print pages
	read page down
	read page up
	remove toolbutton
	replace pages
	scroll
	select text
	set info
	zoom

	Miscellaneous events	do script

	Acrobat Catalog Plug-In	Catalog Windows messages
	Catalog DDE methods	AppExit
	AppFront
	FileBuild
	FileOpen
	FilePurge

	Acrobat Forms Plug-In	Forms plug-in OLE automation
	AFormApp
	Field	Methods
	PopulateListOrComboBox
	SetBackgroundColor
	SetBorderColor
	SetButtonCaption
	SetButtonIcon
	SetExportValues
	SetForegroundColor
	SetJavaScriptAction
	SetResetFormAction
	SetSubmitFormAction
	Properties
	Alignment
	BorderStyle
	BorderWidth
	ButtonLayout
	CalcOrderIndex
	CharLimit
	DefaultValue
	Editable
	Highlight
	IsHidden
	IsMultiline
	IsPassword
	IsReadOnly
	IsRequired
	IsTerminal
	Name
	NoViewFlag
	PrintFlag
	Style
	TextFont
	TextSize
	Type
	Value

	Fields	Methods
	Add
	AddDocJavascript
	ExecuteThisJavascript
	ExportAsFDF
	ExportAsHtml
	ImportAnFDF
	Remove
	Properties
	Count
	Item
	_NewEnum

	Acrobat Search Plug-in	Search plug-in using DDE	Simple query item
	Query item
	Query options
	Query language type constants
	Word option bit-flag constants
	Manipulating indexes through DDE
	Options
	Index operation selectors

	Search plug-in using Apple events	SearchAddIndex
	SearchCountIndexList
	SearchDoQuery
	Word options for Apple events
	SearchGetIndexByPath
	SearchGetIndexFlags
	SearchGetIndexList
	SearchGetIndexPath
	SearchGetIndexTitle
	SearchGetNthIndex
	SearchRemoveIndex
	SearchSetIndexFlags

	Search lists	Menu item names
	Toolbar button names

	Coordinate Systems	User space
	Device space

	Master Doc Search and TOC

	Acrobat-PDFL SDK: JavaScript APIs	Acrobat JavaScript API Reference	Version compatibility
	Overview
	Syntax	Method arguments
	Parameter help

	Paths	Safe path

	Privileged context
	Privileged versus non-privileged context
	User preferences
	Table quick key
	Domain names in code samples

	Changes Across Versions	Acrobat XI changes	Changes to PrintParams object

	Acrobat X changes	New JavaScript version
	Impact of Acrobat menu restructuring on JavaScript APIs
	New util method
	Changes to search object
	Changes to SearchExecuteQuery
	Function SearchIsLegacySearchAvailable deprecated
	Enhancements to PDFOptPDFVersion
	Enhancements to Doc object
	Signature support for Emerging PAdES ETSI ESI standard
	ADBC Support Removed from Documentation

	Acrobat 9.0 changes
	Acrobat 8.1 changes
	Acrobat 8.0 changes
	Acrobat 7.0.5 changes
	Acrobat 7.0 changes	Introduced in Acrobat 7.0
	Modified in Acrobat 7.0

	Acrobat 6.0 changes	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 changes	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe Reader 5.1

	JavaScript APIs	Alerter	Alerter methods

	AlternatePresentation	AlternatePresentation properties
	AlternatePresentation methods

	annotAttachment	annotAttachment properties

	Annotation	Annotation types
	Annotation properties
	Annotation methods

	AnnotRichMedia	AnnotRichMedia properties
	AnnotRichMedia methods

	Annot3D	Annot3D properties

	app	app properties
	app methods

	app.media	app.media properties
	app.media methods

	Bookmark	Bookmark properties
	Bookmark methods

	catalog	catalog properties
	catalog methods

	CatalogJob	CatalogJob properties

	Certificate	Certificate properties

	Collab	Collab methods

	color	Color arrays
	color properties
	color methods

	colorConvertAction	colorConvertAction properties

	Collection	Collection properties
	Collection methods

	collectionField	collectionField properties

	Column	Column properties

	ColumnInfo	ColumnInfo properties

	console	console methods

	Data	Data properties
	Data methods

	DataSourceInfo	DataSourceInfo properties

	dbg	dbg properties
	dbg methods

	Dialog	Dialog methods

	DirConnection	DirConnection properties
	DirConnection methods

	Directory	Directory properties
	Directory methods

	Embedded PDF	Embedded PDF properties
	Embedded PDF methods

	Error	Error properties
	Error methods

	event	Event type/name combinations
	Document Event Processing
	Form event processing
	Multimedia event processing
	event properties

	EventListener	EventListener methods

	Events	Events methods

	FDF	FDF properties
	FDF methods

	Field	Field versus widget attributes
	Field properties
	Field methods

	FullScreen	FullScreen properties

	global	Creating global properties
	Deleting global properties
	Global object security policy
	global methods

	HostContainer	HostContainer properties
	HostContainer methods

	Icon
	Icon Stream
	identity	identity properties

	Index	Index properties
	Index methods

	Link	Link properties
	Link methods

	Monitor	Monitor properties

	Monitors	Monitors methods

	Net	Net properties
	Net methods

	Net.HTTP	Net.HTTP methods

	OCG	OCG properties
	OCG methods
	PlayerInfo properties
	PlayerInfo methods

	PlayerInfoList	PlayerInfoList methods

	PlugIn	PlugIn properties

	PrintParams	PrintParams properties

	RDN
	ReadStream
	Rendition	Rendition properties
	Rendition methods

	Report	Report properties
	Report methods

	Row
	ScreenAnnot	ScreenAnnot properties
	ScreenAnnot methods

	search	search properties
	search methods

	security	security constants
	security properties
	security methods

	SecurityHandler	SecurityHandler properties
	SecurityHandler methods

	SecurityPolicy	SecurityPolicy properties

	SignatureInfo	SignatureInfo properties

	SOAP	SOAP properties
	SOAP methods

	Sound	Sound properties
	Sound methods

	Span	Span properties

	spell	spell properties
	spell methods

	TableInfo
	Template	Template properties
	Template methods

	Thermometer	Thermometer properties
	Thermometer methods

	this
	TTS	TTS properties
	TTS methods

	util	util methods

	XFA
	XMLData	XMLData methods

	Doc and Doc.Media APIs	Doc	Doc properties
	Doc methods

	Doc.media	Doc.media properties
	Doc.media methods

	Preflight APIs	Preflight	Preflight methods

	PreflightAuditTrail	PreflightAuditTrail properties

	PreflightProfile	PreflightProfile properties
	PreflightProfile methods

	PreflightResult	PreflightResult properties
	PreflightResult methods

	Media and Marker APIs	Marker	Marker properties

	Markers	Markers properties
	Markers methods

	MediaOffset	MediaOffset properties

	MediaPlayer	MediaPlayer properties
	MediaPlayer methods

	MediaReject	MediaReject properties

	MediaSelection	MediaSelection properties

	MediaSettings	MediaSettings properties

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Samples Guide	Acrobat SDK: Samples Guide	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer
	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard
	ShowPermissions

	Master Doc Search and TOC

	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer	Limitations

	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard	Limitations

	ShowPermissions

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Accessibility	Acrobat-PDFL SDK: Accessibility	Determining rendering order and logical order	Accessing documents and pages

	Processing inaccessible documents	Processing protected documents
	Processing empty documents
	Processing unavailable documents

	Handling event notifications	Retrieving an MSAA object for an event
	Retrieving a PDF DOM object for an event

	Reading PDF Files Through MSAA	Acrobat implementation of IAccessible objects
	IGetPDDomNode interface	get_PDDomNode

	ISelectText interface	selectText

	Identifying IAccessible objects in a document	get_accID

	IAccessible method summary
	Navigation and hierarchy	accNavigate
	get_accChild
	get_accChildCount
	get_accParent

	Descriptive properties and methods	accDoDefaultAction
	get_accDefaultAction
	get_accDescription
	get_accName
	get_accRole
	get_accState
	get_accValue

	Selection and focus	accSelect
	get_accFocus
	get_accSelection

	Spatial mapping	accLocation
	accHitTest

	IAccessible object types for PDF	PDF Document
	PDF Page
	PDF Protected Document
	Empty PDF Document
	PDF Structure Element
	PDF Content Element
	PDF Comment
	PDF Link
	PDF Text Form Field
	PDF Button Form Field
	PDF CheckBox Form Field
	PDF RadioButton Form Field
	PDF ComboBox Form Field
	PDF List Box Form Field
	PDF Digital Signature Form Field
	PDF Caret

	Reading PDF Files Through the DOM Interface	IPDDomNode data types	CPDDomNodeType
	PDDom_FontStyle
	FontInfoState
	DocState
	NodeRelationship

	IPDDomNode methods	Words and lines in text
	GetParent
	GetType
	GetChild
	GetChildCount
	GetName
	GetValue
	IsSame
	GetTextContent
	GetFontInfo
	GetLocation
	GetFromID
	GetIAccessible
	ScrollTo
	GetTextInLines

	IPDDomNodeExt methods	Navigate
	ScrollToEx
	SetFocus
	GetState
	GetIndex
	GetPageNum
	DoDefaultAction
	Relationship

	IPDDomDocument methods	SetCaret
	GetCaret
	NextFocusNode
	GetFocusNode
	SelectText
	GetTextSelection
	GetSelectionBounds
	GetDocInfo
	GoToPage

	IPDDomElement Methods	GetTagName
	GetStdName
	GetID
	GetAttribute

	IPDDomWord methods	LastWordOfLine

	IPDDomGroupInfo method	GetGroupPosition

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Batch Sequences	Acrobat- PDFL SDK: Using Batch Sequences	Creating and running a batch sequence	Create a batch sequence that sets the disclosed property to true:
	To select files:
	To run a batch sequence:

	Batch processing objects	Aborting a script
	Using the this object

	Global variables
	Beginning and ending a batch job
	Debugging and testing tips

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDF Creation Settings	Acrobat-PDFL SDK: PDF Creation Settings	Terminology
	Organization of settings files
	Namespaces	Common namespace
	Othernamespaces

	Predefined settings files	Where presets are installed
	System preset information

	Reading and writing settings files	Compatibility strategies
	How applications handle incorrect settings files

	How Distiller uses Adobe PDF settings	Distiller initialization
	How Distiller processes PostScript files
	Modifying settings during the job
	Using Distiller to combine PostScript files

	Using PDF Creation Settings	Using the image settings	Image compression settings
	Automatic compression
	Non-automatic compression
	Downsampling and subsampling images
	Setting compression of text, line art, and objects
	Distiller-only image settings

	Using the font settings
	Using the color conversion settings	Distiller color conversion settings
	Creative Suite color conversion settings
	Color settings interchange

	Using the advanced Adobe PDF settings	Relationship between setpagedevice keys and job ticket keys
	Relationship between PostScript comments and job ticket keys

	Using the standards settings	Using the compliance checking settings
	Using the PDF/X output intent settings
	Distiller examples

	Common PDF Settings	Settings descriptions
	General settings	AutoRotatePages
	Binding
	CompatibilityLevel
	CompressObjects
	CoreDistVersion
	Description
	DoThumbnails
	EndPage
	ExportLayers
	HWResolution
	ImageMemory
	Namespace
	Optimize
	OtherNamespaces
	PageSize
	StartPage

	Image settings
	Color image settings	AntiAliasColorImages
	AutoFilterColorImages
	ColorACSImageDict
	ColorImageAutoFilterStrategy
	ColorImageDepth
	ColorImageDict
	ColorImageDownsampleThreshold
	ColorImageDownsampleType
	ColorImageFilter
	ColorImageMinDownsampleDepth
	ColorImageMinResolution
	ColorImageMinResolutionPolicy
	ColorImageResolution
	ConvertImagesToIndexed
	CropColorImages
	DownsampleColorImages
	EncodeColorImages
	JPEG2000ColorACSImageDict
	JPEG2000ColorImageDict

	Grayscale image settings	AntiAliasGrayImages
	AutoFilterGrayImages
	CropGrayImages
	DownsampleGrayImages
	EncodeGrayImages
	GrayACSImageDict
	GrayImageAutoFilterStrategy
	GrayImageDepth
	GrayImageDict
	GrayImageDownsampleThreshold
	GrayImageDownsampleType
	GrayImageFilter
	GrayImageMinDownsampleDepth
	GrayImageMinResolution
	GrayImageMinResolutionPolicy
	GrayImageResolution
	JPEG2000GrayACSImageDict
	JPEG2000GrayImageDict

	Monochrome image settings	AntiAliasMonoImages
	CropMonoImages
	DownsampleMonoImages
	EncodeMonoImages
	MonoImageDepth
	MonoImageDict
	MonoImageDownsampleThreshold
	MonoImageDownsampleType
	MonoImageFilter
	MonoImageMinResolution
	MonoImageMinResolutionPolicy
	MonoImageResolution

	Page Compression Setting	CompressPages

	Font settings	AlwaysEmbed
	CannotEmbedFontPolicy
	EmbedAllFonts
	EmbedOpenType
	MaxSubsetPct
	NeverEmbed
	SubsetFonts

	Color conversion settings	CalCMYKProfile
	CalGrayProfile
	CalRGBProfile
	ColorConversionStrategy
	ColorSettingsFile
	DefaultRenderingIntent
	ParseICCProfilesInComments
	PreserveDICMYKValues
	PreserveHalftoneInfo
	sRGBProfile
	TransferFunctionInfo
	UCRandBGInfo

	Advanced Adobe PDF settings	AllowPSXObjects
	AllowTransparency
	ASCII85EncodePages
	AutoPositionEPSFiles
	CreateJDFFile
	CreateJobTicket
	DetectBlends
	DetectCurves
	DSCReportingLevel
	EmbedJobOptions
	EmitDSCWarnings
	LockDistillerParams
	OPM
	ParseDSCComments
	ParseDSCCommentsForDocInfo
	PassThroughJPEGImages
	PreserveCopyPage
	PreserveEPSInfo
	PreserveFlatness
	PreserveOPIComments
	PreserveOverprintSettings
	UsePrologue

	Standards settings	CheckCompliance
	PDFX1aCheck
	PDFX3Check
	PDFXBleedBoxToTrimBoxOffset
	PDFXCompliantPDFOnly
	PDFXNoTrimBoxError
	PDFXOutputCondition
	PDFXOutputConditionIdentifier
	PDFXOutputIntentProfile
	PDFXRegistryName
	PDFXSetBleedBoxToMediaBox
	PDFXTrapped
	PDFXTrimBoxtoMediaBoxOffset

	Other Namespaces	CreativeSuite namespace settings	AddBleedMarks
	AddColorBars
	AddCropMarks
	AddPageInfo
	AddRegMarks
	BleedOffset
	ConvertColors
	DestinationProfileName
	DestinationProfileSelector
	Downsample16BitImages
	FlattenerPreset
	GenerateStructure
	IncludeBookmarks
	IncludeHyperlinks
	IncludeInteractive
	IncludeLayers
	IncludeProfiles
	MarksOffset
	MarksWeight
	MultimediaHandling
	PageMarksFile
	PageMarksFileName
	PDFXOutputIntentProfileSelector
	PreserveEditing
	UntaggedCMYKHandling
	UntaggedRGBHandling
	UseDocumentBleed

	InDesign namespace settings	AsReaderSpreads
	CropImagesToFrames
	ErrorControl
	FlattenerIgnoreSpreadOverrides
	IncludeGuidesGrids
	IncludeNonPrinting
	IncludeSlug
	OmitPlacedBitmaps
	OmitPlacedEPS
	OmitPlacedPDF
	SimulateOverprint

	Conversions Related to JDF	Creation of the basic JDF file
	Representation of PostScript keys as JDF entries	Conversion of the linear representation of setpagedevice keys

	Mapping of DSC comments into JDF elements and attributes	Composite jobs
	Pre-separated jobs with interleaved separations
	Pre-separated single-colorant jobs

	Mapping of parameters into JDF elements and attributes	General
	Image compression
	Page compression
	Fonts
	Color conversion
	Advanced
	PDF/X
	Conversion of parameters not available through the user interface

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDFMark Reference	Acrobat-PDFL SDK: PDFMark Reference
	Introduction	Syntax of pdfmark operators
	Usage with standard PostScript interpreters
	Syntax for private keys
	Named objects	Built-in named objects
	User-defined named objects
	Namespaces
	Adding content to named objects

	Basic Features	Annotations (ANN)	Text annotations (notes)
	Links
	Other annotations

	Articles (ARTICLE)
	Bookmarks (OUT)
	Document Info dictionary (DOCINFO)
	Document open options (DOCVIEW)
	Embedded file content (EMBED)	Distiller command line options to enable file embedding

	Graphics encapsulation (BP, EP, SP)
	Marked content (MP, DP, BMC, BDC, EMC)	Marked-content points
	Marked-content sequences

	Metadata (Metadata)
	Named images (NI)
	Page crops (PAGE, PAGES)
	Page label and plate color (PAGELABEL)
	Transparency (SetTransparency)	Transparency group XObject and soft mask

	Actions and Destinations	Actions	GoTo actions
	GoToR actions
	Launch actions
	Article actions

	Destinations	View destinations
	Defining named destinations
	Referencing named destinations

	Logical Structure	Elements and parents
	Structure operators
	Structure Tree Root	StRoleMap
	StClassMap

	Elements	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Element content	StBMC
	StBDC
	EMC
	StOBJ

	Attribute objects	StAttr

	Storage and retrieval of the implicit parent stack	StStore
	StRetrieve

	EPS considerations
	Tagged PDF

	Examples	Building an Output Intents array
	Named object examples
	Forms examples
	Structure examples

	JDF Features	Syntax
	XPath Examples

	Distilling Optional Content	Initialization and termination code
	Procedure definitions	AddASEvent
	BeginOC
	EndOC
	GetOCGPdfmarkTag
	OCEndPage
	SetOCGInitState
	SetOCGIntent
	SetOCGUsage
	SimpleOC

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Sample mapping table	Root node
	Emit-string
	Walk-structure
	Define-event-list
	Define-proc-list

	Editing the mapping tables

	Mapping Table Elements Reference	Call-event-list
	Call-proc-list
	Comment
	Conditional-delimiter
	Conditional-prefix
	Conditional-suffix
	Define-event-list
	Define-proc-list
	Element-name
	Emit-all-metadata
	Emit-string
	Evaluate-var
	Event
	Proc-doc-text
	Proc-enum
	Proc-enum-choice
	Proc-fixed
	Proc-graphic-content
	Proc-hex
	Proc-image-content
	Proc-integer
	Proc-length
	Proc-pixels
	Proc-property
	Proc-string
	Proc-var
	Property-name
	Property-type
	Root
	Void
	Walk-cached-property-sets
	Walk-children
	Walk-layout
	Walk-metadata
	Walk-proplist
	Walk-structure

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Snippet Runner Cookbook	Acrobat-PDFL SDK: Snippet Runner Cookbook
	Installing and Running SnippetRunner	SnippetRunner Common Interface	Installing the Common Interface
	Starting the SnippetRunner
	Starting the Common Interface for PDFL
	Creating the configuration file

	Running as a standalone Java application
	Running as a Java applet
	Known issues
	Using the Common Interface

	Writing Snippets	Passing parameters to snippets
	Toggling behavior and asynchronous snippets
	Handling exceptions
	Handling documents

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Tracker	Acrobat-PDFL SDK: Tracker APIs	Benefits of RSS
	Customizing the interface

	Tracker API	Tracker URL API	Add a subscription
	Update a subscription
	Select a subscription
	Remove a subscription
	Convert a subscription to a PDF file
	Display Tracker

	RSS XML feed extensions	Namespace
	Channel extensions
	Item extensions

	User interface driver	Dialog object
	Driver object
	Layout description object
	RSS object
	Selection object

	Customization Examples	Grouping elements
	Adding an external interface driver

	Master Doc Search and TOC

	Acrobat-PDFL SDK: 3D API Reference	Acrobat-PDFL SDK: JS 3D APIs	Object overview	Basic objects
	Scene object
	Canvas object
	Runtime object
	Console object
	Resource objects
	Event handlers
	CameraEvent
	KeyEvent
	MenuEvent
	MouseEvent
	RenderEvent
	ScrollWheelEvent
	SelectionEvent
	TimeEvent
	ToolEvent

	JavaScript Objects for Acrobat 3D	Animation
	Background	getColor
	getImage
	setColor
	setImage

	Bone
	BoundingBox
	Camera	getScreenFromPosition
	getDirectionFromScreen

	CameraEvent
	CameraEventHandler	CameraEventHandler
	onEvent

	Canvas	getCamera
	setCamera

	ClippingPlane	remove

	Color	Color
	Color
	set
	set
	set3

	Console	print
	println

	Dummy
	FlashEvent
	FlashEventHandler	onEvent
	FlashEventHandler

	FlashMovie	FlashMovie
	call
	getVariable
	gotoFrame
	isPlaying
	pan
	play
	rewind
	setVariable
	setZoomRect
	stop
	zoom

	HitInfo
	Host
	Image	Image

	KeyEvent
	KeyEventHandler	KeyEventHandler
	onEvent

	Light
	Material	attachFlashMovie

	Matrix4x4	Matrix4x4
	Matrix4x4
	invertInPlace
	isEqual
	multiply
	multiplyInPlace
	rotateWithQuaternion
	rotateWithQuaternionInPlace
	rotateAboutLine
	rotateAboutLineInPlace
	rotateAboutX
	rotateAboutXInPlace
	rotateAboutVector
	rotateAboutVectorInPlace
	rotateAboutY
	rotateAboutYInPlace
	rotateAboutZ
	rotateAboutZInPlace
	scale
	scaleInPlace
	set
	set
	set
	setIdentity
	setView
	transformDirection
	transformPosition
	translate
	translateInPlace
	transposeInPlace

	MenuEvent
	MenuEventHandler	MenuEventHandler
	onEvent

	Mesh	computeBoundingBox
	setColor

	MouseEvent
	MouseEventHandler	MouseEventHandler
	onEvent

	Node	detachFromCurrentAnimation

	Procedural
	Quaternion	Quaternion
	Quaternion
	Quaternion
	interpolate
	interpolateInPlace
	normalize

	RenderEvent
	RenderEventHandler	RenderEventHandler
	onEvent

	RenderOptions
	Resource	Resource

	Runtime	addCustomMenuItem
	addCustomToolButton
	addEventHandler
	disableTool
	enableTool
	getEventHandler
	getRendererName
	getView
	getView
	pause
	play
	refresh
	removeEventHandler
	removeCustomMenuItem
	removeCustomToolButton
	setCurrentTool
	setCustomMenuItemChecked
	setView
	setView

	Scene	activateAnimation
	addFlashForeground
	addModel
	createClippingPlane
	createLight
	createSquareMesh
	computeBoundingBox
	update

	SceneObject
	SceneObjectList	getByGUID
	getByID
	getByIndex
	getByName
	removeAll
	removeByIndex
	removeItem

	ScrollWheelEvent
	ScrollWheelEventHandler	ScrollWheelEventHandler
	onEvent

	SelectionEvent
	SelectionEventHandler	SelectionEventHandler
	onEvent

	StateEvent
	StateEventHandler	onEvent
	StateEventHandler

	Texture	getImage
	setImage

	TimeEvent
	TimeEventHandler	TimeEventHandler
	onEvent

	ToolEvent
	ToolEventHandler	ToolEventHandler
	onEvent

	Vector3	Vector3
	Vector3
	add
	addInPlace
	addScaled
	addScaledInPlace
	blend
	blendInPlace
	cross
	dot
	normalize
	scale
	scaleInPlace
	set
	set
	set3
	subtract
	subtractInPlace

	View

	Master Doc Search and TOC

 Acrobat Developer Home
 Document Services SDK
 Acrobat Sign SDK
 Acrobat SDK
 PDF Library SDK

 Console

 Acrobat-PDFL SDK Documentation

 	 »
	Acrobat-PDFL SDK: Plugin Development »
	Working with Cos Objects
	

 Next

 Previous

Working with Cos Objects¶

A PDF file is structured as a tree of low-level objects, called Cos objects. Cos objects form all PDF document components, such as bookmarks, pages, fonts, images, and annotations. The Acrobat core API contains methods (the Cos layer) that enable you to operate directly on these low-level objects. You may encounter a situation where you want to perform a task that is not supported by using AV and PD layer methods. In such a situation, it is necessary to use Cos methods.

For example, the Creating Annotations chapter explains how to set text annotations properties by using PDTextAnnot methods. Some newer types of annotations, such as 3D annotations, have properties that cannot be accessed directly by PD layer methods. As a result, you must use Cos layer methods to access the PDF dictionary that represents the annotation. (See Creating 3D annotations.)

Caution

Care is required when working with Cos objects. Unlike using AV and PD objects, Cos objects can produce invalid PDF files. Before working with Cos objects, it is strongly recommended that you be familiar with concepts such as resource dictionaries as discussed in the PDF Reference

About Cos objects¶

PDF files contain various Cos object types. In addition to basic data types such as integer, fixed, and Boolean values, Cos objects also contain the following object types:

	Array

	Dictionary

	Name

	String

	Stream

About direct and indirect objects¶

You can create Cos objects as either direct or indirect objects; the choice is specified as a parameter to the method that creates the object. A direct object is placed directly into another object (such as an array or dictionary). Direct objects cannot be shared between two or more dictionaries or arrays. An indirect object is labeled so that it can be referenced by other objects multiple times. The following is the syntax of an indirect object.

<object number> <generation number> obj
 <direct object>
endobj

<object number> <generation number> is known as an indirect object identifier. An object referencing another indirect object uses the following syntax:

<object number> <generation number>
R

This reference is equivalent to the direct object represented by the indirect object.

This example shows indirect object 6, followed by a reference to it in indirect object 7.

 6 0 obj
 (This is a string)
 endobj

 7 0 obj
 [6 0 R] %An array with one element that is indirect object 6
endobj

If you were to retrieve the zeroth element in the array represented by object 7, you would get the Cos object that represents this string value:

This is a string

On the other hand, in the following definition of indirect object 8, the elements of the array are all direct objects (the integer objects, 1, 2, and 3).

8 0 obj
 [1 2 3]
endobj

About Cos object types¶

Two API objects exist in the Cos layer:

	CosDoc, which represents an entire PDF file.

	CosObj, which represents all the individual object types, such as a Cos string, described in this section. There are various methods to create the different types of Cos objects mentioned in this section, as well as getting and setting their values.

Cos strings¶

A string object consists of a series of bytes—unsigned integer values in the range 0 to 255. The string elements are not integer objects, but are stored in a more compact format. String objects can be written in the following ways:

	As a sequence of literal characters enclosed in parentheses

	As hexadecimal data enclosed in angle brackets

Literal strings¶

A literal string is written as an arbitrary number of characters enclosed in parentheses. Any characters may appear in a string except unbalanced parentheses and the backslashes, which must be treated specially. Balanced pairs of parentheses within a string require no special treatment.

The following are examples of literal strings:

(This is a string)
(Strings may contain newlines
and such)
(Strings may contain balanced parentheses () and
special characters (*!&}^% and so on).)
(The following is an empty string.)
()
(It has zero (0) length.)

Within a literal string, the backslash () is used as an escape character for various purposes, such as including newline characters, nonprinting ASCII characters, unbalanced parentheses, or the backslash character itself in the string. The character immediately following the backslash determines its precise interpretation. If the character following the backslash is not one of those shown in the following table, the backslash is ignored. The following table shows valid literal string escape sequences.

	Escape sequence
	Description

	n
	Line feed (LF)

	r
	Carriage return (CR)

	t
	Horizontal tab (HT)

	b
	Backspace (BS)

	f
	Form feed (FF)

	(
	Left parenthesis

)
	Right parenthesis

	
	Backslash

	ddd
	Character code ddd (octal)

If a string is too long to be conveniently placed on a single line, it may be split across multiple lines by using the backslash character at the end of a line to indicate that the string continues on the following line. The backslash and the end-of-line marker following it are not considered part of the string. For example, the following strings examples are equivalent:

(These two strings are the same.)
(These two strings are the same.)

Hexadecimal strings¶

Strings may also be written in hexadecimal form, which is useful for including arbitrary binary data in a PDF file. A hexadecimal string is written as a sequence of hexadecimal digits (0–9 and either A–F or a–f) enclosed within angle brackets (< and >). Consider the following example:

<4E6F762073686D6F7A206B6120706F702E >

Each pair of hexadecimal digits defines one byte of the string. White-space characters (such as space, tab, carriage return, line feed, and form feed) are ignored. If the final digit of a hexadecimal string is missing, that is, if there is an odd number of digits, the final digit is assumed to be 0. Consider the following example:

<901FA3>

This is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F, and A3, but <901FA> is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F, and A0.

Cos arrays¶

Arrays are one-dimensional collections of objects accessed by a numeric index. Array indexes are zero-based and may be any combination of the Cos data types. The following array has seven elements: three integers, a string, a Boolean value, a dictionary (containing one key-value pair), and an indirect object reference.

[1 2 3 (This is a string) true << /Key (The value) >> 6 0 R]

Cos names¶

A name object is an atomic symbol uniquely defined by a sequence of characters. Uniquely defined means that any two name objects made up of the same sequence of characters are identically the same object. Atomic means that a name has no internal structure; although it is defined by a sequence of characters, those characters are not considered elements of the name.

/AName

A slash character (/) introduces a name. The slash is not part of the name but is a prefix indicating that the following sequence of characters constitutes a name. There can be no white-space characters between the slash and the first character in the name. The name may include any regular characters, but not delimiter or white-space characters. Uppercase and lowercase letters are considered distinct: /A and /a are different names. The following examples are valid literal names:

/Name1
 /ASomewhatLongerName
 /A;Name_With-Various***Characters?
 /1.2
 /$$
 /@pattern
 /.notdef

Beginning with PDF 1.2, any character except null (character code 0) may be included in a name by writing its 2-digit hexadecimal code, preceded by the number sign character (#). This syntax is required to represent any of the delimiter or white-space characters or the number sign character itself; it is recommended but not required for characters whose codes are outside the range 33 (!) to 126 (~). The examples shown in the following table are valid literal names in PDF 1.2 and later.

	Literal name
	Result

	/Adobe#20Green
	Adobe Green

	/PANTONE#205757#20CV
	PANTONE 5757 CV

	/paired#28#29parentheses
	paired()parentheses

	/The_Key_of_F#23_Minor
	The_Key_of_F#_Minor

	/A#42
	AB

The length of a name is subject to an implementation limit. The limit applies to the number of characters in the name’s internal representation. For example, the name /A#20B has four characters (/, A, space, B), not six.

Name objects are treated as atomic symbols within a PDF file. Ordinarily, the bytes making up the name are never treated as text to be presented to a user. However, occasionally the need arises to treat a name object as text, such as one that represents a font name.

In such situations, it is recommended that the sequence of bytes (after expansion of # sequences, if any) be interpreted according to UTF-8, a variable-length byte-encoded representation of Unicode in which the printable ASCII characters have the same representations as in ASCII. This enables a name object to represent text in any natural language, subject to the implementation limit on the length of a name.

Cos dictionaries¶

A dictionary object is an associative table containing pairs of objects, known as the dictionary’s entries. The first element of each entry is the key and the second element is the value. The key must be a name. The value can be any kind of object, including other dictionaries and streams. A dictionary entry whose value is null is equivalent to an absent entry.

A dictionary is a table data structure whose elements are object pairs:

	The first element is the key, which is always a name object, a sequence of characters beginning with the forward slash (/) character. No two entries in the same dictionary should have the same key. If a key does appear more than once, its value is undefined.

	The second element is the Cos object representing the value. You can add new key-value pairs, modify existing key-value pairs, or delete existing key-value pairs in a dictionary.

The following is an example of a dictionary:

<< /Name John /Age 27 /AnArray [1 2 3]>>

The value associated with the Name key is the value John. The value for the Age key is 27. And the value for the AnArray key is an array with the values 1, 2, and 3. For information about creating a Cos dictionary, see Creating Cos dictionaries.

Cos streams¶

A stream is a sequence of bytes that can be read a portion at a time. For this reason, objects with potentially large amounts of data, such as images and page descriptions, are represented as streams. A stream consists of a dictionary followed by zero or more bytes bracketed between the keywords stream and endstream. The following example shows the basic syntax of a stream:

dictionary
stream
 …Zero or more bytes…
endstream

The stream keyword should be followed by an end-of-line marker consisting of either a carriage return and a line feed or just a line feed, and not by a carriage return alone. The sequence of bytes that make up a stream is located between the stream and endstream keywords. Streams must be indirect objects and the stream dictionary must be a direct object. (See About direct and indirect objects.)

Note

For more information about streams, see the PDF Reference.

Working with Cos strings¶

This section discusses ways in which you can work with Cos strings. (See Cos strings.)

Creating Cos strings¶

You can use the Acrobat core API to create a CosObj object that is based on a Cos string.

To create a Cos string:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that is based on a Cos string by invoking the CosNewString method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	A character pointer that specifies the string. Cos strings can contain NULL characters.

	The length of the character pointer.

The following code example creates a CosObj that is based on a Cos string. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a new Cos string
char* mystr = "New String";
CosDoc cd = PDDocGetCosDoc(myPDDoc);
CosObj strObj = CosNewString(cd, false, mystr, strlen(mystr));

Retrieving the string value¶

You can retrieve the string value from a CosObj that is based on a Cos string. To retrieve the string value, invoke the CosStringValue method and pass the following arguments:

	A CosObj that is based on a Cos string.

	The address of an ASTCount object that is used to store the string length.

An exception is thrown if the CosObj object that is passed to the CosStringValue method is not based on a Cos string. The following code example expands the previous code example by retrieving the string value by invoking the PDDocGetCosDoc method.

//Create a new Cos string
char* mystr = "New String";
CosDoc cd = PDDocGetCosDoc (myPDDoc);
CosObj strObj = CosNewString(cd,false,mystr,strlen(mystr));

//Retrieve the string value
char* strValue;
ASTCount length;
strValue = CosStringValue(strObj, &length);

//Display the string value
AVAlertNote(strValue);

Working with Cos arrays¶

This section discusses ways in which you can work with Cos arrays.

Creating Cos arrays¶

You can use the Acrobat core API to create a CosObj object that is based on a Cos array. You specify the number of elements that the Cos array stores when you create it. However, you can add elements dynamically as needed. For example, assume that you create a Cos array that stores three elements. If required, you can add a fourth element. An exception is thrown if the CosObj object that is added to the Cos array is a direct object that is already located in another Cos collection object.

	To create a Cos array:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that is based on a Cos array by invoking the CosNewArray method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASTArraySize object that specifies the number of elements.

	Create a CosObj object that stores a value to add to the Cos array. For example, to create a CosObj object that is based on an integer value, invoke the CosNewInteger method and pass the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASInt32 value that specifies the integer value.

	Add the value to the Cos array by invoking the CosArrayPut method and passing the following arguments:

	A CosObj object that represents a Cos array.

	An ASTArraySize object that specifies a 0-based index value.

	A CosObj object that stores the value to add to the array.

The following code example creates a Cos array and adds the values 1, 2, 3, 4, and 5 to it. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a new Cos array
CosObj ArrayObj, IntObj;
CosDoc cd = PDDocGetCosDoc(myPDDoc);
ArrayObj = CosNewArray (cd, false, 5);

for (int i=1; i<=5; i++)
{

//Create a new CosObj representing the integer value
IntObj = CosNewInteger (cd, false, i);

//Store the integer object in the array
CosArrayPut (ArrayObj, i-1, IntObj);
}

Retrieving Cos array values¶

You can use the Acrobat core API to retrieve values from a CosObj object that is based on a Cos array.

To retrieve values from a Cos array:

	Determine the number of elements by invoking the CosArrayLength method. Pass the CosObj object that represents the Cos array as an argument.

	Get the CosObj object that represents an array element by invoking the CosArrayGet method and passing the following arguments:

	The CosObj object that represents the Cos array

	An ASTArraySize object that represents the index of the array element to retrieve

The CosArrayGet method returns a CosObj object that represents the element

	Get the element value. However, you must invoke the method that corresponds to the CosObj object’s data type. If, for example, the Cos array stores integer values, invoke the CosIntegerValue method to obtain the element’s integer value. Pass the CosObj object that represents the element. This method returns the corresponding value. If the CosIntegerValue method is invoked, then an ASInt32 value is returned.

The following code illustrates a user-defined function named GetArrayValues that retrieves the value of each element and displays it in an alert box. Notice that a CosObj that represents a Cos array is passed to the GetArrayValues as its only parameter.

void GetArrayValues(CosObj array)
{
 CosObj IntObj;
 ASInt32 value, i, NumElements;
 char buf[256];

//Determine the number of elements in the array
NumElements = CosArrayLength(array);

//Iterate through the array
for (i=0; i < NumElements; i++)
 {

//Retrieve a specific element
IntObj = CosArrayGet(array, i);

//Convert the CosObj to its ASInt32 value
value = CosIntegerValue (IntObj);

//Display the value
sprintf(buf, "The element value is %d",value);
 AVAlertNote(buf);
 }
}

Working with Cos dictionaries¶

This section discusses ways in which you can work with Cos dictionaries. (See Cos dictionaries.)

Creating Cos dictionaries¶

You can create a CosObj object that is based on a Cos dictionary. Both the key and its value are CosObj objects that you create and add to the Cos dictionary, which is also a CosObj object.

To create a Cos dictionary:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that represents the dictionary by invoking the CosNewDict method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About Cos objects.)

	An ASTArraySize object that specifies the number of dictionary entries (the number of key and value pairs).

The CosNewDict method returns a CosObj object that represents the new Cos dictionary.

	Create a CosObj object that represents a dictionary value. You must invoke a method that corresponds to the value’s data type. For example, to add an integer value, invoke the CosNewInteger method and pass the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASInt32 value that specifies the integer value.

	Place the CosObj object that represents a dictionary value into the dictionary by invoking the CosDictPut method and passing the following arguments:

	A CosObj that represents the dictionary

	An ASAtom object that specifies the key name

	A CosObj object that specifies the dictionary value

	Repeat steps 3 and 4 for each dictionary entry that you want to add.

The following code example creates a Cos dictionary with the following entries: /Key1 1 /Key2. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a Cos dictionary
CosObj Dict, IntObj;
CosDoc cd;

//Get the CosDoc
cd = PDDocGetCosDoc(myPDDoc);

//Make a new dictionary with two entries
Dict = CosNewDict (cd, false, 2);
IntObj = CosNewInteger (cd, false, 1);

//Place the key value pair of /Key1 1 into the dictionary
CosDictPut (Dict, ASAtomFromString ("Key1"), IntObj);
IntObj = CosNewInteger (cd, false, 2);

//Place the key value pair of /Key2 2 into the dictionary
CosDictPut (Dict, ASAtomFromString ("Key2"), IntObj);

Retrieving values from a Cos dictionary¶

You can retrieve a dictionary element value by performing the following steps:

	Get a dictionary key value by invoking the CosDictGet method and passing the following arguments:

	A CosObj object that represents the dictionary.

	An ASAtom object that represents the key name.

The CosDictGet method returns a CosObj object that represents the dictionary value.

	Get the element value. However, you must invoke the method that corresponds to the CosObj object’s data type. If, for example, the Cos array stores integer values, invoke the CosIntegerValue method to obtain the dictionary entry value. Pass the CosObj object that represents the dictionary entry. This method returns the corresponding value. If the CosIntegerValue method is invoked, then an ASInt32 value is returned.

The following code example retrieves the value of a dictionary element whose key is named Key1. The element value is displayed within an alert box.

//Retrieve the value from the dictionary entry whose key is named Key1
CosObj dictEntry;
ASInt32 dicValue;
char buf[256] ;

//Get the element whose key is named Key1
dictEntry = CosDictGet(Dict, ASAtomFromString("Key1"));
dicValue = CosIntegerValue(dictEntry);

//Display the value of the dictionary element
sprintf(buf,"The value of the dictionary element is %d",dicValue);
AVAlertNote(buf);

Note

The Dict object is a CosObj that represents the dictionary. (See Creating Cos dictionaries.)

Querying a Cos dictionary for a key¶

You can use the Acrobat core API to determine whether a specific key-value pair exists. To perform this task, invoke the CosDictKnown method and pass the following arguments:

	A CosObj object that represents the dictionary.

	An ASAtom object that represents the key name.

This method returns an ASBool value that specifies whether the key-value pair exists. If this method returns true, then the key-value pair exists. The following code example queries a dictionary to determine whether a key named Key1 exists.

//Determine whether a key named Key1 exists
ASBool keyExist = CosDictKnown(Dict, ASAtomFromString("Key1"));
if (keyExist == true)
 AVAlertNote("The dictionary contains a key named Key1");
else
 AVAlertNote("The dictionary does not contain a key named Key1");

Working with Cos names¶

This section discusses ways in which you can work with Cos names. (See Cos names.)

Creating Cos names¶

You can use the Acrobat core API to create a CosObj object that is based on a Cos name.

To create a Cos name:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method and passing a PDDoc object.

	Create a CosObj object that represents the name by invoking the CosNewName method and passing the following arguments:

	A CosDoc object.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	An ASAtom object that represent the name to create.

The CosNewName method returns a CosObj object that represents the new Cos name.

The following code example creates a Cos name with the value Name1. A PDDoc object named myPDDoc is passed to the PDDocGetCosDoc method. (See Creating a PDDoc object.)

//Create a Cos name
CosObj nameObj;
CosDoc cd = PDDocGetCosDoc(myPDDoc);
nameObj = CosNewName(cd, false, ASAtomFromString("Name1"));

Retrieving the value of a name object¶

You can retrieve the value of a name object by using the Acrobat core API. For example, assume that you retrieve the value from the Cos name object created in the previous code example. In this situation, the value that is retrieved is Name1.

To retrieve the value from a Cos name object:

	Invoke the CosNameValue method and pass the CosObj that represents the Cos name. This method returns an ASAtom object that represents the name value.

	Invoke the ASAtomGetString method to get a constant character pointer that specifies the Cos name value. Pass the ASAtom object that is returned from the CosNameValue method.

//Create a Cos name
CosObj nameObj;
CosDoc cd = PDDocGetCosDoc(myPDDoc);
nameObj = CosNewName (cd, false, ASAtomFromString ("Name1"));

//Get and display the value of a Cos name object
ASAtom nameVal = CosNameValue(nameObj);
const char * str = ASAtomGetString(nameVal);
AVAlertNote(str);

Note

The return value of the ASAtomGetString method is a constant character pointer, not a character pointer. You will generate a compile error if you omit the const keyword.

Working with Cos streams¶

This section discusses ways in which you can work with Cos streams. (See Cos streams.)

A stream is represented by an ASStm object definition. A data stream can be a buffer in memory, a file, or an arbitrary user-written procedure. When writing or extracting data streams, an ASStm object must be converted to a Cos stream.

Note

Before reading this section, it is strongly recommended that you are familiar with concepts discussed earlier in this chapter, such as Cos arrays and Cos dictionaries.

Creating Cos streams¶

You can create a data stream in memory and then insert the stream into a PDF document page. The following diagram shows the result of a data stream that creates a thin black line segment being inserted into a PDF document.

The following example shows the syntax of a stream that creates a thin line segment:

150 250 m 150 350 l S

In contrast, the following example shows the syntax of a stream that inserts the text Hello There into a PDF document:

BT /F0 1 Tf 24 0 0 24 36 756 Tm 0 Tr 0 g 0 Tc 0 Tw (Hello There) Tj ET

Note

For information about stream syntax, see the PDF Reference.

Creating a stream dictionary¶

Each Cos stream has a stream dictionary that contains a Length entry that indicates how many bytes are used for the stream’s data (if the stream has a filter, the Length entry is the number of bytes of encoded data). A limit of 4096 bytes exists for the Length entry. A stream dictionary also has optional entries that are not discussed in this section. For more information about stream dictionaries, see the PDF Reference

In addition, most filters are defined so that the data is self-limiting; that is, they use an encoding scheme in which an explicit end-of-data (EOD) marker delimits the extent of the data. Finally, streams are used to represent many objects from whose length attributes can be inferred. All of these constraints must be consistent.

For example, an image with 10 rows and 20 columns, using a single color component and 8 bits per component, requires exactly 200 bytes of image data. If the stream uses a filter, there must be enough bytes of encoded data in the PDF file to produce those 200 bytes. An error occurs if the Length entry is too small, if an explicit EOD marker occurs too soon, or if the decoded data does not contain 200 bytes. It is also an error if the stream contains too much data, with the exception that there may be an extra end-of-line marker in the PDF file before the endstream keyword. All streams created in this section have a stream dictionary defined.

For each stream that you want to insert into a PDF document, create a stream dictionary that contains at least the Length entry, as shown in the following example:

<</Length 100>>

To create a stream dictionary with the Length entry defined:

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method.

	Create an ASUns32 object that represents the stream length.

	Create a CosObj object that represents the length of the stream by invoking the CosNewInteger method and passing the following arguments:

	A CosDoc object that you created in step 1.

	An ASBool object that specifies whether the CosObj object is an indirect or direct object. If true, the string is an indirect object. If false, the string is a direct object. (See About direct and indirect objects.)

	The ASUns32 object created in step 2 that represents the stream length.

The CosNewInteger method returns a CosObj object that represents the stream length.

	Create a CosObj object that represents the Cos dictionary. (See Creating Cos dictionaries.)

	Set the stream dictionary key and value by invoking the CosDictPutKeyString method and passing the following arguments:

	The CosObj object that you created in step 4 that represents the dictionary.

	A character pointer that specifies the name of the key, which in this situation is Length.

	The CosObj object created in step 3 that specifies the length of the stream.

The following code example creates a stream dictionary. The first part of this code example creates a PDPage object by using an AVDoc object. For information about this application logic, see Creating a PDEContent object.

//Create a PDPage object using the current page
AVDoc avDoc = AVAppGetActiveDoc();
AVPageView pageView = AVDocGetPageView(avDoc);
PDPageNumber pageNum = AVPageViewGetPageNum(pageView);
PDDoc pdDoc = AVDocGetPDDoc(avDoc);
PDPage pdPage = PDDocAcquirePage(pdDoc, pageNum);

//Use the PDPage object to get the CosDoc object
CosDoc cd = PDDocGetCosDoc(PDPageGetDoc(pdPage));

//Define a stream to draw a line
char buf [500];
sprintf(buf,"150 250 m 150 350 l S");

//Get the stream length
ASUns32 streamLength = (ASUns32)strlen(buf);

//Create a CosObj object that represents the stream length
CosObj LengthEntry = CosNewInteger(cd, false,streamLength);

//Create a CosObj that represents a stream dictionary

//and sets its key-value pairs
CosObj AttrDict = CosNewDict(cd, false, 5);
char *Length_KStr = "Length";
CosDictPutKeyString(AttrDict, Length_KStr, LengthEntry);

//Determine if the stream dictionary is valid
if (CosObjEqual (AttrDict, CosNewNull ()) == true)
{
 AVAlertNote ("The attributes dictionary could not be created.");
 return;
}

Note

This code example creates a CosObj object named AttrDict that represents a stream dictionary.

Inserting a Cos stream into a PDF document¶

When inserting a stream into a PDF document, ensure that the stream is valid; otherwise, a run-time error occurs. This section explains how to create a stream that draws a thin black line segment and then inserts the stream into the current PDF page.

To insert a stream into the current PDF document page:

	Create a PDPage object that represents the current PDF page. (See Creating a PDEContent object.)

	Create a CosDoc object that represents a PDF file by invoking the PDDocGetCosDoc method.

	Define the stream that draws a thin black line segment. You can populate a character array with a stream by invoking the sprintf method.

	Create an ASUns32 object that represents the stream length.

	Create a CosObj object that represents the stream dictionary. (See Creating a stream dictionary.)

	Read the stream into memory by invoking the ASMemStmRdOpen method and passing the following arguments:

	A character pointer that contains the data stream

	An ASUns32 object that specifies the stream length

This method returns an ASStm object that represents an in-memory data stream.

	Create a new Cos stream that is based on data located in the ASStm object by invoking the CosNewStream method and passing the following arguments:

	A CosDoc object that specifies the PDF document in which the Cos stream is inserted (pass the CosDoc object created in step 2).

	An ASBool object that specifies whether the Cos stream is an indirect object. Because all streams are indirect objects, this argument must be set to true.

	An ASStm object that contains the stream data (pass the ASStm object created in step 6).

	A CosStreamStartAndCode object that specifies the byte offset from which data reading starts. You can pass 0 to ensure that data reading starts at the beginning of the stream.

	An ASBool object that specifies whether the data is encoded using filters specified in the stream dictionary before it is written to the Cos stream.

	A CosObj object that represents the stream dictionary (pass the CosObj object created in step 5).

	A CosObj object that represents the parameters that are used by the encoding filter if the source data is encoded before it is written to the file. If encoding parameters are not required, this value is ignored. For information about encoding filters, see the PDF Reference

	A CosByteMax object that specifies the amount of data read from the source. If this value is -1, data is read from the source until it reaches the end of the stream.

The CosNewStream method returns a CosObj object that represents the Cos stream.

	Replace the contents of the specified page with the Cos stream by invoking the PDPageAddCosContents method and passing the following arguments:

	A PDPage object that represents the current page of the PDF document (pass the PDPage object created in step 1).

	A CosObj object that contains the Cos stream.

The following code example creates a Cos stream and inserts it into the current page of a PDF document.

//Declare local variables used in this code example
CosDoc cd;
CosObj PageStrm, LengthEntry, AttrDict;
CosObj EncodeParms = CosNewNull();
ASStm OpenedStream;
char buf [500];

//Create a PDPage object using the current page
AVDoc avDoc = AVAppGetActiveDoc();
AVPageView pageView = AVDocGetPageView(avDoc);
PDPageNumber pageNum = AVPageViewGetPageNum(pageView);
PDDoc pdDoc = AVDocGetPDDoc(avDoc);
PDPage pdPage = PDDocAcquirePage(pdDoc, pageNum); // acquire current page

//Use the PDPage object to create a CosDoc object
cd = PDDocGetCosDoc(PDPageGetDoc(pdPage));

//Define a stream that creates a thin line segment
sprintf(buf,"150 250 m 150 350 l S");

//Get the stream length
ASUns32 streamLength = (ASUns32)strlen(buf);

//Create a CosObj object that represents the stream length
LengthEntry = CosNewInteger(cd, false,streamLength);

//Create a CosObj that represents a stream dictionary

//and set it key-value pairs
AttrDict = CosNewDict(cd, false,5);
char *Length_KStr = "Length";
CosDictPutKeyString(AttrDict, Length_KStr, LengthEntry);

//Determine if the stream dictionary is valid
if (CosObjEqual (AttrDict, CosNewNull ()) == true)
{
 AVAlertNote ("The stream dictionary could not be created");
 return;
}

//Read the stream into memory by invoking the ASMemStmRdOpen method
OpenedStream = ASMemStmRdOpen(buf,streamLength);

DURING

//Create a new Cos stream using data from the ASStm object
//PageStrm = CosNewStream(cd, true, OpenedStream, 0,
 false, // StmDataIsNotDecoded
 AttrDict, //The stream dictionary
 EncodeParms, -1);

//Close the stream
ASStmClose(OpenedStream);

HANDLER
AVAlertNote ("Trying to create new CosStream");
CosObjDestroy (AttrDict);
ASStmClose (OpenedStream);
return;
END_HANDLER

//Completely replace the contents of the specified page with newContents
PDPageAddCosContents (pdPage, PageStrm);

Caution

If you execute this code example without having a PDF document open, you will cause an Adobe Reader or Acrobat run-time error. The run-time error occurs because this code example creates a PDPage object that is based on the current PDF document page.

Populating a PDF with a content stream¶

This section explains how to use the Acrobat core API to create a new PDF document, insert a page into the document, and populate the page with a Cos content stream that inserts the text Hello There. When inserting a content stream into a PDF document, in addition to creating a stream dictionary, you must also create a resource dictionary and a page dictionary. A resource dictionary defines attributes such as the font that a content stream uses and a page dictionary defines attributes such as the page’s height and width. For information about these dictionaries, see the PDF Reference

The following example shows the resource dictionary that is created in this section.

4 0 obj
<<
/Font << /F0 5 0 R >>
/ProcSet 6 0 R
>>
endobj

The following example shows the font descriptor that is created in this section.

5 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F0
/BaseFont /Courier
/Encoding /WinAnsiEncoding
>>
endobj

The following example shows the Procset resource created in this section.

This is a procset resource.
6 0 obj
[
/PDF /Text
]
endobj

The following example shows the page dictionary that is created in this section.

This is the page dictionary.
7 0 obj
<<
/Type /Page
/MediaBox [0 0 612 792]
/Parent 2 0 R
/Resources 4 0 R
/Contents 8 0 R
>>
endobj

The following diagram shows the PDF document that is created in this section.

To create a PDF document and populate it with a Cos content stream:

	Define the media box rectangle used in the PDF document’s page.

//ASFixedRect MedBox;
 MedBox.left = ASInt32ToFixed (0);
 MedBox.top = ASInt32ToFixed (792);
 MedBox.right = ASInt32ToFixed (612);
 MedBox.bottom = ASInt32ToFixed (0);

	Define the stream that is written to the PDF document page, as shown in the following example.

char* StreamBuf = (char*)"BT /F0 1 Tf 24 0 0 24 36 756 Tm 0 Tr 0 g 0 Tc 0 Tw
 (Hello There) Tj ET";

	Create a PDDoc object that represents the new document by invoking the PDDocCreate method. After the document is created, at least one page must be added before Acrobat or Adobe Reader can display the document.

PDDoc NewDoc = PDDocCreate ();

	Create a PDPage object that represents the page by invoking the PDDocCreatePage method and passing the following arguments:

	The PDDoc object that you created.

	The PDBeforeFirstPage enum value that specifies where to place the page.

	The ASFixedRect object that defines the media box rectangle.

This method returns a PDPage object that represents the new page.

	Create a CosObj object that represents a resource dictionary. In the following code example, a resource dictionary is created in a user-defined function named SetResourceForPage.

	Set the page’s resource key. In the following code example, the page’s resource’s key is set in a user-defined function named CreateResourceDicts.

	Add a Cos stream to the page. In the following code example, a Cos stream is added to the page in a user-defined function named AddStreamToPage.

	Open the PDF document in Adobe Reader or Acrobat. In the following code example, this task occurs in the user-defined function named MakeTheFile.

	Save the PDF document. In the following code example, this task occurs in the user-defined function named MakeTheFile.

The following code example represents an entire C source file that creates a PDF document and populates it with a Cos content stream. This source file is made up by various user-defined functions. To make it easier to view these functions, all function signatures are bolded. The entry point to this source file is the MakeTheFile function. You can invoke the MakeTheFile function from a menu item or toolbar button to execute this code example.

#include "ascalls.h"
#include "avcalls.h"
#include "avcalls.h"
#include "coscalls.h"
#include "pdcalls.h"
#include "ascalls.h"
#include "corcalls.h"
#include "dos.h"
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

//Declare global variables
CosObj PageStrm; /* To hold the newly created Cos stream */
CosObj AttrDict; /* As returned by CreateAttribsDict */
CosObj EncodeDict;

//Used to specify what filters are used to encode the stream if used for output.
CosObj ResDict; /* Resource dictionary for the page */
CosObj FontDictObj;
CosObj FontDict;
CosObj procArray;

//Set the page's resource key. Return true if everything is valid, else false.

ASBool SetResourceForPage (PDPage page)

{
CosObj PageCosObj;

//Make sure that the page is valid
if (!page)
 return false;

DURING

//Get a CosDoc object by using the PDPage page passed to this object
PageCosObj = PDPageGetCosObj(page);

 if (CosDictKnown (PageCosObj, ASAtomFromString ("Resources") == true))
 CosObjDestroy (CosDictGet (PageCosObj, ASAtomFromString ("Resources")));

//Place the ResDict object into the page's Resource Dictionary
CosDictPut (PageCosObj, ASAtomFromString ("Resources"), ResDict);
HANDLER
 return false;
END_HANDLER
return true;
} /* end of SetResourceForPage*/

//Create the font's resources. Return true if all is valid, else false.
//Creates the required font and proc set dictionaries; then creates the global resource dictionary for the PDF page
ASBool CreateResourceDicts (CosDoc cd)

{
DURING
 ResDict = CosNewDict (cd, true, 10);

HANDLER
 AVAlertNote("Trying to create the resource dictionary.");
 return false;
 END_HANDLER

DURING
 FontDictObj = CosNewDict (cd, true, 5);

HANDLER
 AVAlertNote ("Trying to create the font's dictionary.");
 CosObjDestroy (ResDict);
 return false;
END_HANDLER

/* Create this font descriptor dictionary.

 <<
 /Type /Font
 /Subtype /Type1
 /Name /F0
 /BaseFont /Courier
 /Encoding /WinAnsiEncoding
 >>
*/
DURING
 CosDictPut (FontDictObj, ASAtomFromString ("Type"),
 CosNewName (cd, false, ASAtomFromString ("Font")));
 CosDictPut (FontDictObj, ASAtomFromString ("Subtype"),
 CosNewName (cd, false, ASAtomFromString ("Type1")));
 CosDictPut (FontDictObj, ASAtomFromString ("Name"),
 CosNewName (cd, false, ASAtomFromString ("F0")));
 CosDictPut (FontDictObj, ASAtomFromString ("BaseFont"),
 CosNewName (cd,false, ASAtomFromString ("Courier")));
 CosDictPut (FontDictObj, ASAtomFromString ("Encoding"),
 CosNewName (cd,false, ASAtomFromString ("WinAnsiEncoding")));
HANDLER
 AVAlertNote("Trying to add key-value pairs to the Font descriptor dictionary.");
 CosObjDestroy (FontDictObj);
 return false;
END_HANDLER
DURING
 FontDict = CosNewDict (cd, false, 2);
HANDLER
 AVAlertNote ("Trying to create page's resource dictionary.");
 CosObjDestroy (FontDictObj);
return false;
END_HANDLER

 /* Add entries to the page's resource dictionary.
 <<
 /Font << /F0 5 0 R >>
 /ProcSet 6 0 R
 >>
 */

DURING

 /* Add /Font key-value pair to resource dictionary */
 CosDictPut (FontDict, ASAtomFromString ("F0"), FontDictObj);
 CosDictPut (ResDict, ASAtomFromString ("Font"), FontDict);
 HANDLER
 AVAlertNote ("Trying to add key-value pairs to the page's resource dict.");
 CosObjDestroy (FontDictObj);
 CosObjDestroy (FontDict);
 CosObjDestroy (ResDict);
 return false;
 END_HANDLER

 /* Create the following proc set resource array.
 ** [
 ** /PDF /Text
 **]
 */
DURING
 procArray = CosNewArray (cd, true, 5);
HANDLER
 AVAlertNote ("Trying to create proc set array.");
 CosObjDestroy (FontDictObj);
 CosObjDestroy (FontDict);
 CosObjDestroy (ResDict);
 return false;
END_HANDLER

DURING
CosArrayPut (procArray, 0, CosNewName (cd, false, ASAtomFromString ("PDF")));
CosArrayPut (procArray, 1, CosNewName (cd, false, ASAtomFromString ("Text")));

/*Place the proc set key-value pair into the page's resource dictionary.*/

CosDictPut (ResDict, ASAtomFromString ("ProcSet"), procArray);
HANDLER
 CosObjDestroy (FontDictObj);
 CosObjDestroy (FontDict);
 CosObjDestroy (ResDict);
 CosObjDestroy (procArray);
 return false;
END_HANDLER
return true;
}

// Create and return the stream's dictionary that defines the Length attribute
CosObj CreateAttribsDict(CosDoc Doc, ASInt32 Len)

{
//Declare local variables
CosObj Dict; /* Holds newly created dictionary */
ASAtom Key; /* Key used to retrieve CosObj in dictionary */
CosObj Value; /* Assigned, then added to dictionary */
CosObj DecodeArray;

//Create the stream dictionary
Dict = CosNewDict(Doc, false, 10);
Key = ASAtomFromString("Length");
Value = CosNewInteger(Doc, false, Len);
CosDictPut(Dict, Key, Value);
return Dict;
}

//Add stream to page. Return false if there are problems
ASBool AddStreamToPage (PDPage page, char* StreamBuf, ASInt32 StreamBufLen)

{

//Declare local variables
CosDoc cd;
ASStm Stm=NULL;
CosObj PageStrm;
CosObj EncodeParms = CosNewNull();

DURING

//Create the CosDoc object
cd = PDDocGetCosDoc (PDPageGetDoc (page));

HANDLER
 AVAlertNote("Unable to get CosDoc");
 return false;
END_HANDLER

//Retrieve the Attributes dictionary
AttrDict = CreateAttribsDict (cd, StreamBufLen);

if (CosObjEqual (AttrDict, CosNewNull ()) == true){
 AVAlertNote("Not making stream. Attribs dict not created.");
 return false;
}

//Read the stream into memory by invoking the ASMemStmRdOpen method
Stm = ASMemStmRdOpen (StreamBuf, StreamBufLen);
if (!Stm){
 AVAlertNote ("Unable to open data stream to create content stream.");
 return false;
}
DURING

//Creates a new Cos stream using data from the ASStm object
PageStrm = CosNewStream(cd, true, Stm, -1,
 false,
 AttrDict, /* attributesDict */
 EncodeParms,
 -1);

ASStmClose (Stm);

HANDLER
 AVAlertNote ("Trying to create new CosStream.");
 CosObjDestroy (AttrDict);
 ASStmClose (Stm);
 return false;
END_HANDLER

//Add the content stream to the page
PDPageAddCosContents (page, PageStrm);
return true;
} /* end of AddStreamToPage */

//Create the new PDF document
void MakeTheFile (void)

{

//Declare local variables
volatile PDDoc NewDoc = NULL;
volatile PDPage NewPage;
ASFixedRect MedBox;
ASInt32 PageCount = 0;
char* StreamBuf = NULL;
int StreamBufLen = 0;
ASBool result ;

//Set up the page's media box.
MedBox.left = ASInt32ToFixed (0);
MedBox.top = ASInt32ToFixed (792);
MedBox.right = ASInt32ToFixed (612);
MedBox.bottom = ASInt32ToFixed (0);

//Define a stream to set the text matrix and write out the text
StreamBuf = (char*)"BT /F0 1 Tf 24 0 0 24 36 756 Tm 0 Tr 0 g 0 Tc 0 Tw (Hello There) Tj ET";

//Get the length of StreamBufLen - this is where is it determined
StreamBufLen = strlen (StreamBuf);

DURING

//Create a PDDoc object
NewDoc = PDDocCreate();
 if (NewDoc) {

//Invoke the PDDocCreatePage method
// NewPage = PDDocCreatePage(NewDoc, PDBeforeFirstPage, MedBox);
 if (!NewPage)
 ASRaise (0);

//Invoke CreateResourceDicts
// if (CreateResourceDicts(PDDocGetCosDoc(NewDoc)) == false)
 ASRaise (0);

//Invoke SetResourceForPage method
result = SetResourceForPage(NewPage);

// Invoke AddStreamToPage
result = AddStreamToPage (NewPage, StreamBuf, StreamBufLen);
 if (result == false)
 ASRaise (0);

 PDPageRelease (NewPage);
}
HANDLER
 AVAlertNote ("Problem creating document.");
 if (NewPage) PDPageRelease (NewPage);
 if (NewDoc) PDDocClose (NewDoc);
 return;
END_HANDLER
DURING

//Open the new doc
AVDocOpenFromPDDoc(NewDoc, NULL);

//Save the PDF document to the root of C and name it cosPDFDocument.pdf
PDDocSave(NewDoc, PDSaveFull | PDSaveLinearized,ASPathFromPlatformPath

("C:cosPDFDocument.pdf"), NULL, NULL, NULL);

HANDLER
 AVAlertNote ("Cannot open new document.");
END_HANDLER
}

 © Copyright 2022, Adobe Inc..

 Last updated on May 02, 2023.

