

	
	 	

 Acrobat and PDFL Developer Guides

 Acrobat-PDFL SDK Documentation

 	Acrobat and PDFL SDK Documentation	Master search and TOC
	Documentation
	Related specifications	PDF Reference
	Other formats
	12.x Legacy docs
	11.x and earlier documentation

	Acrobat-PDFL SDK: Overview	Acrobat-PDFL SDK: Overview	Developer support
	Licensing and distribution	Acrobat Reader
	Additional resources
	Technical and licensing limitations

	Samples provided with the Acrobat SDK
	Developing for Acrobat Reader	Acrobat vs. Reader
	Acrobat Reader plug-in guidelines
	Reader enabled plugins

	SDK technologies and options	JavaScript
	Plug-ins
	JavaScript vs. plugins: pros and cons
	Interapplication communication
	Viewing PDF documents from an external application
	Controlling Acrobat from an external application
	Adobe PDF Library

	Sandbox Broker Extensibility	Extending broker APIs at run time
	Components	Plugin (PI)
	Sandbox process
	Broker process (The broker process running with full rights)
	Plugin broker (The plugin broker process that extends the broker APIs at runtime)
	SandboxHFT (Public HFT provided by sandbox for broker extensibility)
	IPC channel between plugin and plugin broker, 1->6->4
	simple-ipc-lib and SandboxPISDK
	Building a plug-in
	Building a plugin’s broker process

	Handshake between plugin and plugin broker
	Implement CrossCalls (make calls from plug-in to plug-in’s broker process)	Changes required in the plugin (client)
	Changes required in the plugin’s broker (server)

	PDF File Creation	Creating PDF files from an authoring application	Acrobat Distiller
	Automated creation of PDF documents from Windows
	Automatic generation of advanced Acrobat features
	Attaching a native document to a PDF file
	Batch processing with Distiller
	Tagged PDF documents

	Creating PDF files using plug-ins or JavaScript	Empty PDF files
	PDF files from multiple files

	Creating PDF files without using Acrobat

	Working with PDF Features	Navigation in PDF documents	Bookmarks
	Thumbnails
	Links
	Actions for special effects

	PDF page manipulation	Page content
	Document logical structure
	Other ways of modifying PDF documents

	Watermarks
	Spell-checking
	Multimedia
	Printing PDF files
	Embedded fonts

	User Interface Modifications	Menu items and menus	Menu items
	Menus

	Toolbars	Items on a toolbar
	Toolbar creation

	Customization of Acrobat Help	About dialog box and splash screen
	Plug-in help files

	Annotations and Online Collaboration	About annotations	Annotations and JavaScript
	Annotations with plug-ins or IAC

	New annotation types

	XML and the Acrobat SDK	Adobe XML architecture	XML forms model
	XML templates
	Extensible Metadata Platform

	SOAP and web services
	Conversion of PDF documents to XML format
	XML-based information

	Forms and the Acrobat SDK	Workflows for forms
	About XML forms
	About Acrobat forms	Forms API
	OLE automation

	Metadata, Accessibility, and PDF Layers	Metadata	Extensible Metadata Platform (XMP)
	Adobe XMP Toolkit

	Accessibility
	PDF layers	Creation of layered PDF files
	What you can do with layers

	Searching and Indexing	Search plug-in
	Indexes and the Catalog plug-in

	Frequently Asked Questions	Forms	What are the requirements for using Acrobat forms?
	What is the FDF Toolkit?

	PDF documents	What ActiveX solutions are available?
	Visual Basic .NET and Visual C# .NET
	What API methods are available to modify PDF documents?
	Can I modify PDFs without a C programming background?
	How can I extract text?
	How can I display a PDF in an external application window?
	Using Acrobat to view PDFs in your own application
	Are multibyte font PDF documents supported by the Acrobat SDK?
	How are security and encryption provided in PDFs?

	Full-text search	What tools are available with Acrobat for full-text search?
	What tools are available for extracting and highlighting text?
	How do I communicate with the Acrobat Search plug-in?
	How do I create custom DocInfo fields for searching?

	How do I use the Windows command line?
	How can I customize the Acrobat installer?

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Plugin Development	Acrobat-PDFL SDK: Developing Plugins	About plugins
	About the Acrobat core API	Acrobat Viewer layer
	Portable Document layer
	Acrobat Support layer
	Cos layer
	Platform-specific methods

	Acrobat core API objects	File object interrelationships
	Document object interrelationships

	Acrobat core API methods
	Data types	Scalar types
	Simple types
	Complex types
	Opaque types
	Cos types

	About PDF Library and plugin applications	Manipulating Acrobat and Adobe Reader
	Displaying a PDF document in an external window
	Indexed searching
	Modifying file access
	Creating new annotation types
	Dynamically adding text to PDF documents

	Understanding your target application	Rights-enabled PDF documents
	Adobe Reader plugins

	Registering plugins for use by the plugin finder	PDF dictionary extensions

	Understanding Plugins	Plugin loading and initialization	Handshaking
	Exporting HFTs
	Importing HFTs and registering for notifications
	Initialization
	Unloading
	Summarizing a plugin’s life cycle

	Using callback functions
	Notifications
	Handling events	Mouse clicks
	Adjust cursor
	Key presses

	Using plugin prefixes	Obtaining a developer PDF name prefix
	Using a developer prefix

	Modifying the Acrobat or Adobe Reader user interface	Adding or removing menus and menu items
	Modifying toolbars
	Controlling the About box and splash screen
	Creating help files
	User interface guidelines

	Acquiring and releasing objects
	Debugging plugins
	Page view layers
	Minimizing screen redrawing
	Storing private data in PDF files
	Exporting data from PDF document objects

	Creating Plugin and PDF Library Applications	Working with platform-specific techniques	About platform-dependent data
	Portability techniques
	Windows techniques
	Mac OS techniques

	Creating a sample plugin	Including Acrobat SDK library files
	Adding the PIMain source file
	Adding application logic
	Compiling and building your plugin

	Creating a sample PDF Library application	Contents of the PDF Library SDK
	Developing applications with the Adobe PDF Library
	Initialization and termination
	Multithreading

	Upgrading existing plugins	Detecting supported APIs

	Migrating PDFL apps to Xcode

	Inserting Text into PDF Documents	Creating a new PDF document
	Creating a new page
	Creating a container
	Acquiring fonts
	Creating a PDEGraphicState object
	Creating an ASFixedMatrix object
	Inserting text
	Saving the PDF document
	Examining a PDFL app source file

	Working with Documents and Files	Opening PDF documents
	Opening a PDF in an external window	Creating a Window
	Defining the parameters for an external window
	Creating a handler for an external window
	Displaying an open dialog box
	Displaying a PDF in a window

	Determining the PDF version	PDF version
	PDF version extensions
	Setting the extension level of a document
	Getting the extension level of a document

	Bridging core API layers	Creating a PDDoc object
	Creating a PDDoc object for an open PDF
	Accessing non-PDF files

	Printing documents
	Working with the PDF/X format

	Creating Menus and Menu Commands	About menus	About AVmenubar typedefs
	About AVMenu typedefs
	About AVMenuItem typedefs

	Adding menu commands to menus	Adding a menu command to an existing menu
	Adding a menu command to a new menu

	Creating menu callback functions
	Determining if a menu item can be executed

	Creating Toolbars and Buttons	About toolbars	About AVToolBar typedefs
	About AVToolButton typedefs

	Retrieving toolbars
	Creating toolbar buttons	Setting help text for a button
	Setting label text
	Creating a sub-menu for a button

	Retrieving existing toolbar buttons
	Attaching a button to a toolbar
	Exposing a button in a web browser
	Removing a button from a toolbar
	Creating toolbar button callback functions

	Creating Annotations	Working with text annotations	Creating text annotations
	Retrieving existing annotations
	Modifying text annotations

	Working with redaction annotations	Creating a redaction annotation
	Modifying an existing redaction annotation
	Applying redaction annotations (removing redacted content)

	Working with Bookmarks	About bookmarks
	Creating bookmarks	Defining bookmark actions
	Removing bookmark actions
	Opening and closing bookmarks

	Retrieving bookmarks	Retrieving the root bookmark
	Retrieving a specific bookmark
	Retrieving all bookmarks

	Deleting bookmarks

	Working with Page Views and Contents	About page coordinates
	About page views
	Displaying page views
	Modifying page contents	Creating a PDEContent object
	Accessing page contents
	Determining page element types
	Modifying text elements

	Working with Words	About searching for words	About PDWord typedefs
	About PDWordFinder typedefs

	Creating a PDWordFinder object
	Extracting and displaying words
	Highlighting words

	Creating Handlers	About handlers
	Action handlers
	Annotation handlers
	AVCommand handlers	Creating an AVCommand handler
	Invoking AVCommands
	Configuring AVCommands
	Running commands
	Exposing AVCommands to the batch framework

	File format conversion handlers
	File specification handlers
	Selection servers
	Tool callbacks
	Window handlers
	File systems
	Progress monitors
	Transition handlers
	Adding message handling

	Registering for Event Notifications	Registering event notifications
	Unregistering event notifications

	Working with Document Security	About document security
	About security handlers	Adding a security handler
	Opening a secured file
	Saving a secured file

	Setting security for a document	Saving a file with an encryption dictionary
	Opening an encrypted file

	Working with Unicode Paths	About Unicode paths
	Creating Unicode file path application logic
	Retrieving Unicode path values	Creating an ASFileSys object
	Creating an ASFileSys object that supports Unicode paths

	Working with Host Function Tables	About host function tables
	Exporting host function tables	Creating HFT methods
	Creating HFT method definitions
	Creating HFT callback functions
	Creating new Host Function Tables
	Examining HFT header and source files

	Importing an existing HFT
	Invoking HFT methods
	Replacing HFT methods
	Migrating non-HFT PDF Library applications to HFT applications

	Working with Cos Objects	About Cos objects	About direct and indirect objects
	About Cos object types

	Working with Cos strings	Creating Cos strings
	Retrieving the string value

	Working with Cos arrays	Creating Cos arrays
	Retrieving Cos array values

	Working with Cos dictionaries	Creating Cos dictionaries
	Retrieving values from a Cos dictionary
	Querying a Cos dictionary for a key

	Working with Cos names	Creating Cos names
	Retrieving the value of a name object

	Working with Cos streams	Creating Cos streams
	Populating a PDF with a content stream

	Working with 3D Annotations	Creating 3D annotations
	Adding 3D data to an annotation	Creating the 3D annotation dictionary entries
	Specifying the 3D stream
	Setting the default view
	Setting the annotation appearance
	Setting the activation dictionary

	Parsing and Creating PRC Files	Working with the Acrobat 3D API	Versions
	Compatibility with different PRC format versions
	Compatibility between the Acrobat 3D Library and the Acrobat 3D API
	Requirements
	Data types, naming conventions, and character encoding
	Structured and recursive nature of PRC parsing

	Implementing external linking in your plugin	Implementing external linking

	Parsing a PRC file	Handling errors
	Copying the embedded PRC file to a separate file
	Initializing the Acrobat 3D API
	Parsing structure PRC entities
	Parsing tessellation PRC entities
	Parsing topology PRC entities
	Parsing PRC entities that specify graphics
	Parsing attributes that appear in an entity base
	Terminating the interface with the Acrobat 3D API

	Creating a PRC file that uses boundary representation	Error handling
	Creating a model file entity and exporting it to a physical file
	Creating structure PRC entities
	Creating representation item PRC entities
	Creating topology PRC entities
	Creating geometry PRC entities
	Defining root-level attributes for a PRC entity
	Creating a 3D annotation that references the PRC file

	Creating a tessellation entity for representing faceted objects	Create the tessellation base data
	Create the tessellation facet data

	Handling Exceptions	Creating exception handlers
	Returning a value from an exception handler
	Raising exceptions
	Exception handling scenarios	Using goto statements
	Using nested exception handlers
	Using register variables

	Working with Acrobat Extended APIs	Search extended API
	Catalog extended API
	PDF Consultant and Accessibility Checker extended API	Acrobat agents
	Reclassifying and revisiting
	Agent architecture
	How the consultant works
	Important issues for consultant development
	Importing the consultant HFTs into a plugin
	Creating and destroying consultants
	Registering agents with consultants
	Starting the consultant
	Consultant object type identification
	Creating an agent class
	Creating agent constructors
	Recognizing objects of interest
	Post processing stage

	Digital signature extended API	The PubSec layer
	Digital signature components
	Digital signature scenarios
	Initializing the digital signature plugin
	Understanding the process

	Forms extended API
	Weblink extended API	Weblink services
	Writing a custom driver

	Spelling extended API
	AcroColor extended API	Color conversion operations

	PDF Optimizer API

	Creating an Adobe Reader Plugin	Configuring preprocessor definitions
	Creating the public and private key pairs
	Enabling the plugin for Adobe Reader	Plugin to be Notarized on MacOS

	Troubleshooting an Adobe Reader plugin	Plugin appears to be ignored by Adobe Reader
	Adobe Reader error messages

	Reader Plugins	Reader enablement
	APIs available for Adobe Reader

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Interapplication Communication	Developing for Interapplication Communication	About the API object layers	Object reference syntax
	Objects in the Acrobat application layer
	Objects in the portable document layer

	Plugins for extending the IAC interfaces
	Developing for Acrobat Reader
	DDE messages
	Apple events

	Using OLE	OLE capabilities in Acrobat	On-screen rendering
	Remote control of Acrobat
	PDF browser controls

	Development environment considerations	Environment configuration
	Necessary C knowledge

	Using the Acrobat OLE interfaces	About the CAcro classes
	About the COleDispatchDriver class
	Using COleDispatchDriver objects and methods

	Using the JSObject interface	Adding a reference to the Acrobat type library
	Creating a simple application
	Working with annotations
	Spell-checking a document
	Tips for translating JavaScript to JSObject

	Other development topics	Synchronous messaging
	MDI applications
	Event handling in child windows
	Determining if an Acrobat application is running
	Exiting from an application

	Summary of OLE objects and methods

	Using DDE
	Using Apple Events
	OLE Automation	AcroExch.App	Methods
	CloseAllDocs
	Exit
	GetActiveDoc
	GetActiveTool
	GetAVDoc
	GetFrame
	GetInterface
	GetLanguage
	GetNumAVDocs
	GetPreferenceEx
	Hide
	Lock
	Minimize
	Maximize
	MenuItemExecute
	MenuItemIsEnabled
	MenuItemIsMarked
	MenuItemRemove
	Restore
	SetActiveTool
	SetFrame
	SetPreference
	SetPreferenceEx
	Show
	ToolButtonIsEnabled
	ToolButtonRemove
	Unlock
	UnlockEx

	AcroExch.AVDoc	Methods
	BringToFront
	ClearSelection
	Close
	FindText
	GetAVPageView
	GetFrame
	GetPDDoc
	GetTitle
	GetViewMode
	IsValid
	Maximize
	Open
	OpenInWindow
	OpenInWindowEx
	PrintPages
	PrintPagesEx
	PrintPagesSilent
	PrintPagesSilentEx
	SetFrame
	SetTextSelection
	SetTitle
	SetViewMode
	ShowTextSelect

	AcroExch.AVPageView	Methods
	DevicePointToPage
	DoGoBack
	DoGoForward
	GetAperture
	GetAVDoc
	GetDoc
	GetPage
	GetPageNum
	GetZoom
	GetZoomType
	Goto
	PointToDevice
	ReadPageDown
	ReadPageUp
	ScrollTo
	ZoomTo

	AcroExch.HiliteList	Add

	AcroExch.PDAnnot	Methods
	GetColor
	GetContents
	GetDate
	GetRect
	GetSubtype
	GetTitle
	IsEqual
	IsOpen
	IsValid
	Perform
	SetColor
	SetContents
	SetDate
	SetOpen
	SetRect
	SetTitle

	AcroExch.PDBookmark	Methods
	Destroy
	GetByTitle
	GetTitle
	IsValid
	Perform
	SetTitle

	AcroExch.PDDoc	Methods
	AcquirePage
	ClearFlags
	Close
	Create
	CreateTextSelect
	CreateThumbs
	CropPages
	DeletePages
	DeleteThumbs
	GetFileName
	GetFlags
	GetInfo
	GetInstanceID
	GetJSObject
	GetNumPages
	GetPageMode
	GetPermanentID
	InsertPages
	MovePage
	Open
	OpenAVDoc
	ReplacePages
	Save
	SetFlags
	SetInfo

	AcroExch.PDPage	Methods
	AddAnnot
	AddNewAnnot
	CopyToClipboard
	CreatePageHilite
	CreateWordHilite
	CropPage
	Draw
	DrawEx
	GetAnnot
	GetAnnotIndex
	GetDoc
	GetNumAnnots
	GetNumber
	GetRotate
	GetSize
	RemoveAnnot
	SetRotate

	AcroExch.PDTextSelect	Methods
	Destroy
	GetBoundingRect
	GetNumText
	GetPage
	GetText

	AcroExch.Point	X
	Y

	AcroExch.Rect	Bottom
	Left
	Right
	Top

	AcroExch.Time	Date
	Hour
	Millisecond
	Minute
	Month
	Second
	Year

	AxAcroPDFLib.AxAcroPDF	Methods
	GetVersions
	GoBackwardStack
	GoForwardStack
	GotoFirstPage
	GotoLastPage
	GotoNextPage
	GotoPreviousPage
	LoadFile
	Print
	PrintAll
	PrintAllFit
	PrintPages
	PrintPagesFit
	PrintWithDialog
	SetCurrentHighlight
	SetCurrentPage
	SetLayoutMode
	SetNamedDest
	SetPageMode
	SetShowScrollbars
	SetShowToolbar
	SetView
	SetViewRect
	SetViewScroll
	SetZoom
	SetZoomScroll
	Src

	DDE Messages	AppExit
	AppHide
	AppShow
	CloseAllDocs
	DocClose
	DocDeletePages
	DocFind
	DocGoTo
	DocGoToNameDest
	DocInsertPages
	DocOpen
	DocPageDown
	DocPageLeft
	DocPageRight
	DocPageUp
	DocPrint
	DocReplacePages
	DocSave
	DocSaveAs
	DocScrollTo
	DocSetViewMode
	DocZoomTo
	FileOpen
	FileOpenEx
	FilePrint
	FilePrintEx
	FilePrintSilent
	FilePrintSilentEx
	FilePrintTo
	FilePrintToEx
	FullMenus
	HideToolbar
	MenuitemExecute
	ShortMenus
	ShowToolbar

	Apple Event Objects and Apple Events	Objects	annotation
	application
	AVPageView
	bookmark
	conversion
	EPS Conversion
	Link Annotation
	menu
	menu item
	PDAnnot
	PDBookMark
	PDLinkAnnot
	PDPage
	PDTextAnnot
	PDF Window
	PostScript Conversion
	Text Annotation

	Required suite events	open
	print
	quit
	run

	Core suite events	close
	count
	delete
	exists
	get
	make
	move
	open
	quit
	save
	set

	Acrobat application events	bring to front
	clear selection
	close all docs
	create thumbs
	delete pages
	delete thumbs
	execute
	find next note
	find text
	get info
	go backward
	go forward
	goto
	goto next
	goto previous
	insert pages
	is toolbutton enabled
	maximize
	perform
	print pages
	read page down
	read page up
	remove toolbutton
	replace pages
	scroll
	select text
	set info
	zoom

	Miscellaneous events	do script

	Acrobat Catalog Plug-In	Catalog Windows messages
	Catalog DDE methods	AppExit
	AppFront
	FileBuild
	FileOpen
	FilePurge

	Acrobat Forms Plug-In	Forms plug-in OLE automation
	AFormApp
	Field	Methods
	PopulateListOrComboBox
	SetBackgroundColor
	SetBorderColor
	SetButtonCaption
	SetButtonIcon
	SetExportValues
	SetForegroundColor
	SetJavaScriptAction
	SetResetFormAction
	SetSubmitFormAction
	Properties
	Alignment
	BorderStyle
	BorderWidth
	ButtonLayout
	CalcOrderIndex
	CharLimit
	DefaultValue
	Editable
	Highlight
	IsHidden
	IsMultiline
	IsPassword
	IsReadOnly
	IsRequired
	IsTerminal
	Name
	NoViewFlag
	PrintFlag
	Style
	TextFont
	TextSize
	Type
	Value

	Fields	Methods
	Add
	AddDocJavascript
	ExecuteThisJavascript
	ExportAsFDF
	ExportAsHtml
	ImportAnFDF
	Remove
	Properties
	Count
	Item
	_NewEnum

	Acrobat Search Plug-in	Search plug-in using DDE	Simple query item
	Query item
	Query options
	Query language type constants
	Word option bit-flag constants
	Manipulating indexes through DDE
	Options
	Index operation selectors

	Search plug-in using Apple events	SearchAddIndex
	SearchCountIndexList
	SearchDoQuery
	Word options for Apple events
	SearchGetIndexByPath
	SearchGetIndexFlags
	SearchGetIndexList
	SearchGetIndexPath
	SearchGetIndexTitle
	SearchGetNthIndex
	SearchRemoveIndex
	SearchSetIndexFlags

	Search lists	Menu item names
	Toolbar button names

	Coordinate Systems	User space
	Device space

	Master Doc Search and TOC

	Acrobat-PDFL SDK: JavaScript APIs	Acrobat JavaScript API Reference	Version compatibility
	Overview
	Syntax	Method arguments
	Parameter help

	Paths	Safe path

	Privileged context
	Privileged versus non-privileged context
	User preferences
	Table quick key
	Domain names in code samples

	Changes Across Versions	Acrobat XI changes	Changes to PrintParams object

	Acrobat X changes	New JavaScript version
	Impact of Acrobat menu restructuring on JavaScript APIs
	New util method
	Changes to search object
	Changes to SearchExecuteQuery
	Function SearchIsLegacySearchAvailable deprecated
	Enhancements to PDFOptPDFVersion
	Enhancements to Doc object
	Signature support for Emerging PAdES ETSI ESI standard
	ADBC Support Removed from Documentation

	Acrobat 9.0 changes
	Acrobat 8.1 changes
	Acrobat 8.0 changes
	Acrobat 7.0.5 changes
	Acrobat 7.0 changes	Introduced in Acrobat 7.0
	Modified in Acrobat 7.0

	Acrobat 6.0 changes	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 changes	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe Reader 5.1

	JavaScript APIs	Alerter	Alerter methods

	AlternatePresentation	AlternatePresentation properties
	AlternatePresentation methods

	annotAttachment	annotAttachment properties

	Annotation	Annotation types
	Annotation properties
	Annotation methods

	AnnotRichMedia	AnnotRichMedia properties
	AnnotRichMedia methods

	Annot3D	Annot3D properties

	app	app properties
	app methods

	app.media	app.media properties
	app.media methods

	Bookmark	Bookmark properties
	Bookmark methods

	catalog	catalog properties
	catalog methods

	CatalogJob	CatalogJob properties

	Certificate	Certificate properties

	Collab	Collab methods

	color	Color arrays
	color properties
	color methods

	colorConvertAction	colorConvertAction properties

	Collection	Collection properties
	Collection methods

	collectionField	collectionField properties

	Column	Column properties

	ColumnInfo	ColumnInfo properties

	console	console methods

	Data	Data properties
	Data methods

	DataSourceInfo	DataSourceInfo properties

	dbg	dbg properties
	dbg methods

	Dialog	Dialog methods

	DirConnection	DirConnection properties
	DirConnection methods

	Directory	Directory properties
	Directory methods

	Embedded PDF	Embedded PDF properties
	Embedded PDF methods

	Error	Error properties
	Error methods

	event	Event type/name combinations
	Document Event Processing
	Form event processing
	Multimedia event processing
	event properties

	EventListener	EventListener methods

	Events	Events methods

	FDF	FDF properties
	FDF methods

	Field	Field versus widget attributes
	Field properties
	Field methods

	FullScreen	FullScreen properties

	global	Creating global properties
	Deleting global properties
	Global object security policy
	global methods

	HostContainer	HostContainer properties
	HostContainer methods

	Icon
	Icon Stream
	identity	identity properties

	Index	Index properties
	Index methods

	Link	Link properties
	Link methods

	Monitor	Monitor properties

	Monitors	Monitors methods

	Net	Net properties
	Net methods

	Net.HTTP	Net.HTTP methods

	OCG	OCG properties
	OCG methods
	PlayerInfo properties
	PlayerInfo methods

	PlayerInfoList	PlayerInfoList methods

	PlugIn	PlugIn properties

	PrintParams	PrintParams properties

	RDN
	ReadStream
	Rendition	Rendition properties
	Rendition methods

	Report	Report properties
	Report methods

	Row
	ScreenAnnot	ScreenAnnot properties
	ScreenAnnot methods

	search	search properties
	search methods

	security	security constants
	security properties
	security methods

	SecurityHandler	SecurityHandler properties
	SecurityHandler methods

	SecurityPolicy	SecurityPolicy properties

	SignatureInfo	SignatureInfo properties

	SOAP	SOAP properties
	SOAP methods

	Sound	Sound properties
	Sound methods

	Span	Span properties

	spell	spell properties
	spell methods

	TableInfo
	Template	Template properties
	Template methods

	Thermometer	Thermometer properties
	Thermometer methods

	this
	TTS	TTS properties
	TTS methods

	util	util methods

	XFA
	XMLData	XMLData methods

	Doc and Doc.Media APIs	Doc	Doc properties
	Doc methods

	Doc.media	Doc.media properties
	Doc.media methods

	Preflight APIs	Preflight	Preflight methods

	PreflightAuditTrail	PreflightAuditTrail properties

	PreflightProfile	PreflightProfile properties
	PreflightProfile methods

	PreflightResult	PreflightResult properties
	PreflightResult methods

	Media and Marker APIs	Marker	Marker properties

	Markers	Markers properties
	Markers methods

	MediaOffset	MediaOffset properties

	MediaPlayer	MediaPlayer properties
	MediaPlayer methods

	MediaReject	MediaReject properties

	MediaSelection	MediaSelection properties

	MediaSettings	MediaSettings properties

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Samples Guide	Acrobat SDK: Samples Guide	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer
	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard
	ShowPermissions

	Master Doc Search and TOC

	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer	Limitations

	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard	Limitations

	ShowPermissions

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Accessibility	Acrobat-PDFL SDK: Accessibility	Determining rendering order and logical order	Accessing documents and pages

	Processing inaccessible documents	Processing protected documents
	Processing empty documents
	Processing unavailable documents

	Handling event notifications	Retrieving an MSAA object for an event
	Retrieving a PDF DOM object for an event

	Reading PDF Files Through MSAA	Acrobat implementation of IAccessible objects
	IGetPDDomNode interface	get_PDDomNode

	ISelectText interface	selectText

	Identifying IAccessible objects in a document	get_accID

	IAccessible method summary
	Navigation and hierarchy	accNavigate
	get_accChild
	get_accChildCount
	get_accParent

	Descriptive properties and methods	accDoDefaultAction
	get_accDefaultAction
	get_accDescription
	get_accName
	get_accRole
	get_accState
	get_accValue

	Selection and focus	accSelect
	get_accFocus
	get_accSelection

	Spatial mapping	accLocation
	accHitTest

	IAccessible object types for PDF	PDF Document
	PDF Page
	PDF Protected Document
	Empty PDF Document
	PDF Structure Element
	PDF Content Element
	PDF Comment
	PDF Link
	PDF Text Form Field
	PDF Button Form Field
	PDF CheckBox Form Field
	PDF RadioButton Form Field
	PDF ComboBox Form Field
	PDF List Box Form Field
	PDF Digital Signature Form Field
	PDF Caret

	Reading PDF Files Through the DOM Interface	IPDDomNode data types	CPDDomNodeType
	PDDom_FontStyle
	FontInfoState
	DocState
	NodeRelationship

	IPDDomNode methods	Words and lines in text
	GetParent
	GetType
	GetChild
	GetChildCount
	GetName
	GetValue
	IsSame
	GetTextContent
	GetFontInfo
	GetLocation
	GetFromID
	GetIAccessible
	ScrollTo
	GetTextInLines

	IPDDomNodeExt methods	Navigate
	ScrollToEx
	SetFocus
	GetState
	GetIndex
	GetPageNum
	DoDefaultAction
	Relationship

	IPDDomDocument methods	SetCaret
	GetCaret
	NextFocusNode
	GetFocusNode
	SelectText
	GetTextSelection
	GetSelectionBounds
	GetDocInfo
	GoToPage

	IPDDomElement Methods	GetTagName
	GetStdName
	GetID
	GetAttribute

	IPDDomWord methods	LastWordOfLine

	IPDDomGroupInfo method	GetGroupPosition

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Batch Sequences	Acrobat- PDFL SDK: Using Batch Sequences	Creating and running a batch sequence	Create a batch sequence that sets the disclosed property to true:
	To select files:
	To run a batch sequence:

	Batch processing objects	Aborting a script
	Using the this object

	Global variables
	Beginning and ending a batch job
	Debugging and testing tips

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDF Creation Settings	Acrobat-PDFL SDK: PDF Creation Settings	Terminology
	Organization of settings files
	Namespaces	Common namespace
	Othernamespaces

	Predefined settings files	Where presets are installed
	System preset information

	Reading and writing settings files	Compatibility strategies
	How applications handle incorrect settings files

	How Distiller uses Adobe PDF settings	Distiller initialization
	How Distiller processes PostScript files
	Modifying settings during the job
	Using Distiller to combine PostScript files

	Using PDF Creation Settings	Using the image settings	Image compression settings
	Automatic compression
	Non-automatic compression
	Downsampling and subsampling images
	Setting compression of text, line art, and objects
	Distiller-only image settings

	Using the font settings
	Using the color conversion settings	Distiller color conversion settings
	Creative Suite color conversion settings
	Color settings interchange

	Using the advanced Adobe PDF settings	Relationship between setpagedevice keys and job ticket keys
	Relationship between PostScript comments and job ticket keys

	Using the standards settings	Using the compliance checking settings
	Using the PDF/X output intent settings
	Distiller examples

	Common PDF Settings	Settings descriptions
	General settings	AutoRotatePages
	Binding
	CompatibilityLevel
	CompressObjects
	CoreDistVersion
	Description
	DoThumbnails
	EndPage
	ExportLayers
	HWResolution
	ImageMemory
	Namespace
	Optimize
	OtherNamespaces
	PageSize
	StartPage

	Image settings
	Color image settings	AntiAliasColorImages
	AutoFilterColorImages
	ColorACSImageDict
	ColorImageAutoFilterStrategy
	ColorImageDepth
	ColorImageDict
	ColorImageDownsampleThreshold
	ColorImageDownsampleType
	ColorImageFilter
	ColorImageMinDownsampleDepth
	ColorImageMinResolution
	ColorImageMinResolutionPolicy
	ColorImageResolution
	ConvertImagesToIndexed
	CropColorImages
	DownsampleColorImages
	EncodeColorImages
	JPEG2000ColorACSImageDict
	JPEG2000ColorImageDict

	Grayscale image settings	AntiAliasGrayImages
	AutoFilterGrayImages
	CropGrayImages
	DownsampleGrayImages
	EncodeGrayImages
	GrayACSImageDict
	GrayImageAutoFilterStrategy
	GrayImageDepth
	GrayImageDict
	GrayImageDownsampleThreshold
	GrayImageDownsampleType
	GrayImageFilter
	GrayImageMinDownsampleDepth
	GrayImageMinResolution
	GrayImageMinResolutionPolicy
	GrayImageResolution
	JPEG2000GrayACSImageDict
	JPEG2000GrayImageDict

	Monochrome image settings	AntiAliasMonoImages
	CropMonoImages
	DownsampleMonoImages
	EncodeMonoImages
	MonoImageDepth
	MonoImageDict
	MonoImageDownsampleThreshold
	MonoImageDownsampleType
	MonoImageFilter
	MonoImageMinResolution
	MonoImageMinResolutionPolicy
	MonoImageResolution

	Page Compression Setting	CompressPages

	Font settings	AlwaysEmbed
	CannotEmbedFontPolicy
	EmbedAllFonts
	EmbedOpenType
	MaxSubsetPct
	NeverEmbed
	SubsetFonts

	Color conversion settings	CalCMYKProfile
	CalGrayProfile
	CalRGBProfile
	ColorConversionStrategy
	ColorSettingsFile
	DefaultRenderingIntent
	ParseICCProfilesInComments
	PreserveDICMYKValues
	PreserveHalftoneInfo
	sRGBProfile
	TransferFunctionInfo
	UCRandBGInfo

	Advanced Adobe PDF settings	AllowPSXObjects
	AllowTransparency
	ASCII85EncodePages
	AutoPositionEPSFiles
	CreateJDFFile
	CreateJobTicket
	DetectBlends
	DetectCurves
	DSCReportingLevel
	EmbedJobOptions
	EmitDSCWarnings
	LockDistillerParams
	OPM
	ParseDSCComments
	ParseDSCCommentsForDocInfo
	PassThroughJPEGImages
	PreserveCopyPage
	PreserveEPSInfo
	PreserveFlatness
	PreserveOPIComments
	PreserveOverprintSettings
	UsePrologue

	Standards settings	CheckCompliance
	PDFX1aCheck
	PDFX3Check
	PDFXBleedBoxToTrimBoxOffset
	PDFXCompliantPDFOnly
	PDFXNoTrimBoxError
	PDFXOutputCondition
	PDFXOutputConditionIdentifier
	PDFXOutputIntentProfile
	PDFXRegistryName
	PDFXSetBleedBoxToMediaBox
	PDFXTrapped
	PDFXTrimBoxtoMediaBoxOffset

	Other Namespaces	CreativeSuite namespace settings	AddBleedMarks
	AddColorBars
	AddCropMarks
	AddPageInfo
	AddRegMarks
	BleedOffset
	ConvertColors
	DestinationProfileName
	DestinationProfileSelector
	Downsample16BitImages
	FlattenerPreset
	GenerateStructure
	IncludeBookmarks
	IncludeHyperlinks
	IncludeInteractive
	IncludeLayers
	IncludeProfiles
	MarksOffset
	MarksWeight
	MultimediaHandling
	PageMarksFile
	PageMarksFileName
	PDFXOutputIntentProfileSelector
	PreserveEditing
	UntaggedCMYKHandling
	UntaggedRGBHandling
	UseDocumentBleed

	InDesign namespace settings	AsReaderSpreads
	CropImagesToFrames
	ErrorControl
	FlattenerIgnoreSpreadOverrides
	IncludeGuidesGrids
	IncludeNonPrinting
	IncludeSlug
	OmitPlacedBitmaps
	OmitPlacedEPS
	OmitPlacedPDF
	SimulateOverprint

	Conversions Related to JDF	Creation of the basic JDF file
	Representation of PostScript keys as JDF entries	Conversion of the linear representation of setpagedevice keys

	Mapping of DSC comments into JDF elements and attributes	Composite jobs
	Pre-separated jobs with interleaved separations
	Pre-separated single-colorant jobs

	Mapping of parameters into JDF elements and attributes	General
	Image compression
	Page compression
	Fonts
	Color conversion
	Advanced
	PDF/X
	Conversion of parameters not available through the user interface

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDFMark Reference	Acrobat-PDFL SDK: PDFMark Reference
	Introduction	Syntax of pdfmark operators
	Usage with standard PostScript interpreters
	Syntax for private keys
	Named objects	Built-in named objects
	User-defined named objects
	Namespaces
	Adding content to named objects

	Basic Features	Annotations (ANN)	Text annotations (notes)
	Links
	Other annotations

	Articles (ARTICLE)
	Bookmarks (OUT)
	Document Info dictionary (DOCINFO)
	Document open options (DOCVIEW)
	Embedded file content (EMBED)	Distiller command line options to enable file embedding

	Graphics encapsulation (BP, EP, SP)
	Marked content (MP, DP, BMC, BDC, EMC)	Marked-content points
	Marked-content sequences

	Metadata (Metadata)
	Named images (NI)
	Page crops (PAGE, PAGES)
	Page label and plate color (PAGELABEL)
	Transparency (SetTransparency)	Transparency group XObject and soft mask

	Actions and Destinations	Actions	GoTo actions
	GoToR actions
	Launch actions
	Article actions

	Destinations	View destinations
	Defining named destinations
	Referencing named destinations

	Logical Structure	Elements and parents
	Structure operators
	Structure Tree Root	StRoleMap
	StClassMap

	Elements	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Element content	StBMC
	StBDC
	EMC
	StOBJ

	Attribute objects	StAttr

	Storage and retrieval of the implicit parent stack	StStore
	StRetrieve

	EPS considerations
	Tagged PDF

	Examples	Building an Output Intents array
	Named object examples
	Forms examples
	Structure examples

	JDF Features	Syntax
	XPath Examples

	Distilling Optional Content	Initialization and termination code
	Procedure definitions	AddASEvent
	BeginOC
	EndOC
	GetOCGPdfmarkTag
	OCEndPage
	SetOCGInitState
	SetOCGIntent
	SetOCGUsage
	SimpleOC

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Sample mapping table	Root node
	Emit-string
	Walk-structure
	Define-event-list
	Define-proc-list

	Editing the mapping tables

	Mapping Table Elements Reference	Call-event-list
	Call-proc-list
	Comment
	Conditional-delimiter
	Conditional-prefix
	Conditional-suffix
	Define-event-list
	Define-proc-list
	Element-name
	Emit-all-metadata
	Emit-string
	Evaluate-var
	Event
	Proc-doc-text
	Proc-enum
	Proc-enum-choice
	Proc-fixed
	Proc-graphic-content
	Proc-hex
	Proc-image-content
	Proc-integer
	Proc-length
	Proc-pixels
	Proc-property
	Proc-string
	Proc-var
	Property-name
	Property-type
	Root
	Void
	Walk-cached-property-sets
	Walk-children
	Walk-layout
	Walk-metadata
	Walk-proplist
	Walk-structure

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Snippet Runner Cookbook	Acrobat-PDFL SDK: Snippet Runner Cookbook
	Installing and Running SnippetRunner	SnippetRunner Common Interface	Installing the Common Interface
	Starting the SnippetRunner
	Starting the Common Interface for PDFL
	Creating the configuration file

	Running as a standalone Java application
	Running as a Java applet
	Known issues
	Using the Common Interface

	Writing Snippets	Passing parameters to snippets
	Toggling behavior and asynchronous snippets
	Handling exceptions
	Handling documents

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Tracker	Acrobat-PDFL SDK: Tracker APIs	Benefits of RSS
	Customizing the interface

	Tracker API	Tracker URL API	Add a subscription
	Update a subscription
	Select a subscription
	Remove a subscription
	Convert a subscription to a PDF file
	Display Tracker

	RSS XML feed extensions	Namespace
	Channel extensions
	Item extensions

	User interface driver	Dialog object
	Driver object
	Layout description object
	RSS object
	Selection object

	Customization Examples	Grouping elements
	Adding an external interface driver

	Master Doc Search and TOC

	Acrobat-PDFL SDK: 3D API Reference	Acrobat-PDFL SDK: JS 3D APIs	Object overview	Basic objects
	Scene object
	Canvas object
	Runtime object
	Console object
	Resource objects
	Event handlers
	CameraEvent
	KeyEvent
	MenuEvent
	MouseEvent
	RenderEvent
	ScrollWheelEvent
	SelectionEvent
	TimeEvent
	ToolEvent

	JavaScript Objects for Acrobat 3D	Animation
	Background	getColor
	getImage
	setColor
	setImage

	Bone
	BoundingBox
	Camera	getScreenFromPosition
	getDirectionFromScreen

	CameraEvent
	CameraEventHandler	CameraEventHandler
	onEvent

	Canvas	getCamera
	setCamera

	ClippingPlane	remove

	Color	Color
	Color
	set
	set
	set3

	Console	print
	println

	Dummy
	FlashEvent
	FlashEventHandler	onEvent
	FlashEventHandler

	FlashMovie	FlashMovie
	call
	getVariable
	gotoFrame
	isPlaying
	pan
	play
	rewind
	setVariable
	setZoomRect
	stop
	zoom

	HitInfo
	Host
	Image	Image

	KeyEvent
	KeyEventHandler	KeyEventHandler
	onEvent

	Light
	Material	attachFlashMovie

	Matrix4x4	Matrix4x4
	Matrix4x4
	invertInPlace
	isEqual
	multiply
	multiplyInPlace
	rotateWithQuaternion
	rotateWithQuaternionInPlace
	rotateAboutLine
	rotateAboutLineInPlace
	rotateAboutX
	rotateAboutXInPlace
	rotateAboutVector
	rotateAboutVectorInPlace
	rotateAboutY
	rotateAboutYInPlace
	rotateAboutZ
	rotateAboutZInPlace
	scale
	scaleInPlace
	set
	set
	set
	setIdentity
	setView
	transformDirection
	transformPosition
	translate
	translateInPlace
	transposeInPlace

	MenuEvent
	MenuEventHandler	MenuEventHandler
	onEvent

	Mesh	computeBoundingBox
	setColor

	MouseEvent
	MouseEventHandler	MouseEventHandler
	onEvent

	Node	detachFromCurrentAnimation

	Procedural
	Quaternion	Quaternion
	Quaternion
	Quaternion
	interpolate
	interpolateInPlace
	normalize

	RenderEvent
	RenderEventHandler	RenderEventHandler
	onEvent

	RenderOptions
	Resource	Resource

	Runtime	addCustomMenuItem
	addCustomToolButton
	addEventHandler
	disableTool
	enableTool
	getEventHandler
	getRendererName
	getView
	getView
	pause
	play
	refresh
	removeEventHandler
	removeCustomMenuItem
	removeCustomToolButton
	setCurrentTool
	setCustomMenuItemChecked
	setView
	setView

	Scene	activateAnimation
	addFlashForeground
	addModel
	createClippingPlane
	createLight
	createSquareMesh
	computeBoundingBox
	update

	SceneObject
	SceneObjectList	getByGUID
	getByID
	getByIndex
	getByName
	removeAll
	removeByIndex
	removeItem

	ScrollWheelEvent
	ScrollWheelEventHandler	ScrollWheelEventHandler
	onEvent

	SelectionEvent
	SelectionEventHandler	SelectionEventHandler
	onEvent

	StateEvent
	StateEventHandler	onEvent
	StateEventHandler

	Texture	getImage
	setImage

	TimeEvent
	TimeEventHandler	TimeEventHandler
	onEvent

	ToolEvent
	ToolEventHandler	ToolEventHandler
	onEvent

	Vector3	Vector3
	Vector3
	add
	addInPlace
	addScaled
	addScaledInPlace
	blend
	blendInPlace
	cross
	dot
	normalize
	scale
	scaleInPlace
	set
	set
	set3
	subtract
	subtractInPlace

	View

	Master Doc Search and TOC

 Acrobat Developer Home
 Document Services SDK
 Acrobat Sign SDK
 Acrobat SDK
 PDF Library SDK

 Console

 Acrobat-PDFL SDK Documentation

 	 »
	Acrobat-PDFL SDK: PDFMark Reference »
	Basic Features
	

 Next

 Previous

Basic Features¶

This chapter describes the basic pdfmark features. In general, the key–value pairs used as arguments for pdfmark follow closely the key–value pairs that appear in the PDF file. For a description of the PDF file format, see the PDF Reference.

The following features are described in this chapter:

	Annotations (ANN)

	Articles (ARTICLE)

	Bookmarks (OUT)

	Document Info dictionary (DOCINFO)

	Document open options (DOCVIEW)

	Embedded file content (EMBED)

	Graphics encapsulation (BP, EP, SP)

	Marked content (MP, DP, BMC, BDC, EMC)

	Metadata (Metadata)

	Named images (NI)

	Page crops (PAGE, PAGES)

	Page label and plate color (PAGELABEL)

	Transparency (SetTransparency)

Other pdfmark features are defined in other chapters of this document.

Annotations (ANN)¶

PDF supports several types of annotations. The properties of each annotation are specified in an annotation dictionary containing various key–value pairs. The PDF Reference describes all the types of annotations, and their required and optional dictionary entries.

The pdfmark operator using the feature name ANN is used to specify an annotation in a PostScript file. The general syntax is as follows:

[/Rect [
xll yll xur yur
]

/Subtype
name
 …Optional key–value pairs…
/ANN pdfmark

The following table describes the two required keys for annotations.

Required annotation keys

	Key
	Type
	Semantics

	Rect
	array
	An array of four numbers [xll yll xur yur] specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates—in user space—of the rectangle defining the open note window or link button.

	Subtype
	name
	The annotation’s PDF subtype. If omitted, the value defaults to Text , indicating a note annotation. See the table PDF annotation types for the possible subtypes that can be used.

As of PDF 1.3, the following annotation types are supported:

	Value of subtype key
	Description

	Circle
	Circle annotation

	FileAttachment
	File attachment annotation

	FreeText
	Free text annotation

	Highlight
	Highlight annotation

	Ink
	Ink annotation

	Line
	Line annotation

	Link
	Link annotation

	Movie
	Movie annotation

	Popup
	Pop-up annotation

	Sound
	Sound annotation

	Square
	Square annotation

	Stamp
	Rubber stamp annotation

	StrikeOut
	Strikeout annotation

	Text
	Text annotation (note)

	TrapNet
	Trap network annotation

	Underline
	Underline annotation

	Widget
	Widget annotation

Each type has its own set of key-value pairs that can be specified, as described in the PDF Reference. Future versions of PDF may introduce new types.

In addition to these types, annotations with unrecognized Subtype values, called custom annotations, are supported. Custom annotations can contain, in addition to the Rect and Subtype keys, arbitrary key-value pairs.

	Custom annotation

[/Rect [400 435 500 535]
 /Subtype /ADBETest_DummyType
 /ADBETest_F8Array [0 1 1 2 3 5 8 13]
 /ANN pdfmark

When viewed with Acrobat Viewer, this annotation appears with an unknown annotation icon.

The following table lists optional keys that are common to all annotations. Specific annotation types have additional keys that they use. See the PDF Reference for complete information.

Optional annotation keys

	Key
	Type
	Semantics

	Action(PDF key = A)
	name or dictionary
	An action to be performed when the annotation is activated. See Actions for details.

For links, this key is not permitted if the Dest key is present.

	AP
	dictionary
	An appearance dictionary specifying how the annotation is presented visually. See the PDF Reference for details.

	AS
	name
	The annotation’s appearance state. See the PDF Reference for details.

	Border
	array
	The link’s border properties. Border is an array containing three numbers and, optionally, an array. All elements are specified in user space coordinates.

If Border is of the form [bx by c], the numbers specify the horizontal corner radius (bx), the vertical corner radius (by), and the width (c) of the link’s border. The link has a solid border.

If it is of the form [bx by c [d]], the fourth element (d) is a dash array that specifies the lengths of dashes and gaps in the link’s border.

The default value for Border is [0 0 1].

	Color(PDF key = C)
	array
	A color value used for the background of the annotation’s icon when closed; the title bar of the annotation’s pop-up window; and the border of a link annotation.

The value is an array containing three numbers (red, green, and blue), each of which must be between 0 and 1, inclusive, specifying a color in the DeviceRGB color space. (See the PDF Reference for a description of this color space.) If omitted, a default color is used.

	F
	integer
	A set of flags specifying various characteristics. See the PDF Reference for details .

	ModDate(PDF key = M)
	string
	The date and time the note was last modified. It should be of the form:

(D:YYYYMMDDHHmmSSOHH’mm’)

D: is an optional but strongly recommended prefix. YYYY is the year. All fields after the year are optional. MM is the month (01-12), DD is the day (01-31), HH is the hour (00-23), mm are the minutes (00-59), and SS are the seconds (00-59). The remainder of the string defines the relation of local time to GMT. O is either + for a positive difference (local time is later than GMT) or - (minus) for a negative difference. HH’ is the absolute value of the offset from GMT in hours, and mm’ is the absolute value of the offset in minutes. If no GMT information is specified, the relation between the specified time and GMT is considered unknown. Regardless of whether or not GMT information is specified, the remainder of the string should specify local time

	SrcPg
	integer
	The sequence number of the page on which the annotation appears. (The first page in a document is always page 1.) If this key is used, the pdfmark can be placed anywhere in the PostScript language file. If omitted, the pdfmark must occur within the PostScript language description for the page on which the annotation is to appear.

	Title(PDF key = T)
	string
	The text label to be displayed in the title bar of the annotation’s pop-up window when open and active

The encoding and character set used is either PDFDocEncoding (as described in the PDF Reference) or Unicode. If Unicode, the string must begin with <FEFF>. For example, the string “ABC” is represented as (ABC) in PDFDocEncoding and <FEFF004100420043> in Unicode. Title has a maximum length of 255 PDFDocEncoding characters or 126 Unicode values, although a practical limit of 32 characters is advised so that it can be read easily in the Acrobat viewer.

Text annotations (notes) and Links describe the syntax for two of the original and most commonly used annotation types in more detail.

Text annotations (notes)¶

Notes are known as text annotations in PDF. The syntax for creating a note is as follows:

[/Contents string
 /Rect [xll yll xur yur]
 /SrcPg pagenum
 /Open boolean
 /Color array
 /Title string
 /ModDate datestring
 /Name name
 /Subtype /Text
 /ANN pdfmark

In addition to the keys described in the tables Required annotation keys and Optional annotation keys, the keys specific to text annotations are listed in the following table. In addition to these keys, notes may also specify arbitrary key–value pairs.

Keys specific to text annotations

	Key
	Type
	Semantics

	Contents
	string
	Required. Contains the note’s text string. The maximum length of the Contents string is 65,535 characters. The encoding and character set used is the PDFDocEncoding (described in the PDF Reference) or Unicode. If Un

	Open
	Boolean
	Optional. If true , the note is open (that is, the text is visible). If false (the default if omitted), the note is closed (that is, displayed as an icon).

	Name
	name
	Optional. The name of an icon to be used in displaying the note. The values are: Note (default), Comment , Help , Insert , Key , NewParagraph , Paragraph.

The following examples demonstrate the use of notes.

	Text annotation

[/Contents (My unimaginative contents)
 /Rect [400 550 500 650]
 /Open false
 /Title (My Boring Title)

 % The following is private data. Keys within the private
 % dictionary do not need to use the organization's prefix
 % because the dictionary encapsulates them.

 /ADBETest_MyInfo
 <<
 /Routing [(Me) (You)]
 /Test_Privileges << /Me /All /You /ReadOnly >>
 >>

 /ADBETest_PrivFlags 42
 /ANN pdfmark

	Simple note

[/Rect [75 586 456 663]
 /Contents (This is an example of a note. You can type text directly into a note or copy text from the clipboard.)
 /ANN pdfmark

	Fancy note

[/Rect [75 425 350 563]
 /Open true
 /Title (John Doe)
 /Contents (This is an example of a note. Here is some text after a forced line break.

This is another way to do line breaks.)

 /Color [1 0 0]
 /Border [0 0 1]
 /ANN pdfmark

	Private data in note

[/Contents (My unimaginative contents)
 /Rect [400 550 500 650]
 /Open false
 /Title (My Boring Title)

% The following is private data. Keys within the private
% dictionary do not need to use the organization's prefix
% because the dictionary encapsulates them.

 /ADBETest_MyInfo
 <<
 /Routing [(Me) (You)]
 /Test_Privileges << /Me /All /You /ReadOnly >>
 >>

 /ADBETest_PrivFlags 42
 /ANN pdfmark

Links¶

A link annotation represents either a hypertext link to a destination in the document, or an action to be performed.

The usual syntax for creating a link is as follows:

[/Rect [
xll yll xur yur
]
/Border [
bx by c [d]
]
/SrcPg
pagenum

/Color
array

/Subtype /Link
… Action-or-destination-specifying key–value pairs …

/ANN pdfmark

In addition to the keys described in the tables Required annotation keys and Optional annotation keys, a link may also contain keys specifying destinations or actions, described in Actions and Destinations.

The following examples demonstrate the use of links.

	Link annotation

[/Rect [70 550 210 575]
 /Border [0 0 2 [3]]
 /Color [0 1 0]
 /Page /Next
 /View [/XYZ -5 797 1.5]
 /Subtype /Link
 /ANN pdfmark

	Simple link (old style, compatible with all Distiller application versions)

[/Rect [70 650 210 675]
 /Page 3
 /View [/XYZ -5 797 1.5]
 /LNK pdfmark

	Simple link

[/Rect [70 650 210 675]
 /Border [16 16 1]
 /Color [1 0 0]
 /Page 1
 /View [/FitH 5]
 /Subtype /Link
 /ANN pdfmark

	Fancy link

[/Rect [70 550 210 575]
 /Border [0 0 2 [3]]
 /Color [0 1 0]
 /Page /Next
 /View [/XYZ -5 797 1.5]
 /Subtype /Link
 /ANN pdfmark

	Link that launches another file

[/Rect [70 600 210 625]
 /Border [16 16 1]
 /Color [0 0 1]
 /Action /Launch
 /File (test.doc)
 /Subtype /Link
 /ANN pdfmark

	Custom link action (URI link for the Acrobat WebLink plug-in)

[/Rect [50 425 295 445]
 /Action << /Subtype /URI /URI (http://www.adobe.com) >>
 /Border [0 0 2]
 /Color [.7 0 0]
 /Subtype /Link
 /ANN pdfmark

% Equivalent link using Launch action

[/Rect [50 425 295 445]
 /Action /Launch
 /Border [0 0 2]
 /Color [.7 0 0]
 /URI (http://www.adobe.com)
 /Subtype /Link
 /ANN pdfmark

% URI link with a named destination

[/Rect [50 425 295 445]
 /Action << /Subtype /URI /URI (http://www.adobe.com#YourDestination) >>
 /Border [0 0 2]
 /Color [.7 0 0]
 /Subtype /Link
 /ANN pdfmark

	Custom link action (named action)

% Link with a named action—executes a menu item

[/Rect [50 425 295 445]
 /Action << /Subtype /Named /N /GeneralInfo >>
 /Border [0 0 2]
 /Color [.7 0 0]
 /Subtype /Link
 /ANN pdfmark

Other annotations¶

A number of other annotation types are available. For example, consider the following movie annotation.

	Movie annotation

[/Subtype /Movie
 /Rect [216 503 361 612]
 /T (Title)
 /F 1

 % The specified file may be a movie or sound file
 % Add your movie in place of "(/Disk/moviefile)"

 /Movie << /F (/Disk/moviefile) /Aspect [160 120] >>
 /A << /ShowControls true >>
 /Border [0 0 3]
 /C [0 0 1]
 /ANN pdfmark

For a complete list of available annotation types, see PDF annotation types.

One useful type of annotation is the widget annotation. Widgets are used by PDF interactive forms to represent the appearance of fields and to manage user interactions. See the PDF Reference for detailed information on using interactive forms.

For examples of using widget annotations to create interactive forms, see Define the Widget annotations, which are also field dictionaries for this form.

The following example appears with an unknown annotation icon in the Acrobat viewers, because they do not know how to interpret this annotation type.

	Custom annotation type

[/Rect [400 435 500 535]
 /Subtype /ADBETest_DummyType
 /ADBETest_F8Array [0 1 1 2 3 5 8 13]
 /ANN pdfmark

Articles (ARTICLE)¶

Articles consist of a title and a list of rectangular areas called beads. Each bead is specified by the pdfmark operator in conjunction with the feature name ARTICLE. Beads are added to the article in the order that they are encountered in the PostScript language file.

The syntax for a bead pdfmark is as follows:

 [/Title
string

 /Rect [
xll yll xur yur
]
 /Page
pagenum

 /ARTICLE pdfmark

Article bead attributes

	Key
	Type
	Semantics

	Title
	string
	Required. The title of the article to which a bead belongs. The encoding and character set used is either PDFDocEncoding (as described in the PDF Reference) or Unicode. If Unicode, the string must begin with <FEFF>. For example, the Unicode string for (ABC) is <FEFF004100420043>. Title has a maximum length of 255 PDFDocEncoding characters or 126 Unicode values, although a practical limit of 32 characters is advised so that it can be read easily in the Acrobat viewer.

	Rect
	array
	Required. An array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates—in user space—of the rectangle defining the bead.

	Page
	integer
	Optional. The sequence number of the page on which the bead is located. A bead pdfmark that contains the optional Page key can be placed anywhere in the PostScript language file. A bead pdfmark that does not contain this key must occur within the PostScript language description for the page on which the article bead is to appear.

In addition to the keys listed in the preceding table, the first bead in an article can also specify arbitrary key–value pairs. Suggested keys are Subject , Author , and Keywords.

Note

Articles do not support dictionaries as values in arbitrary key–value pairs.

The following examples demonstrate the use of articles.

	Article action

[/Action /Article /Dest (Now is the Time)
 /Title (Now is the Time)
 /OUT pdfmark

	Create text for the article “Now is the Time”

/Helvetica 12 selectfont
(Now is the Time (Article)) 230 690 moveto show
(Now is the time for all good men to come to the aid of their
country.) 230 670 moveto show
(Now is the time for all good people to come to the aid of their
country.) 230 655 moveto show

% ... additional text ...

(Click here to go to Adobe's Home Page on the Web) 55 430 moveto show

	Article containing two beads

[/Title (Now is the Time)
 /Author (John Doe)
 /Subject (Coming to the aid of your country)
 /Keywords (Time, Country, Aid)
 /Rect [225 500 535 705]
 /Page 2
 /ARTICLE pdfmark
[/Title (Now is the Time)
 /Rect [225 500 535 705]
 /Page 3
 /ARTICLE pdfmark

Bookmarks (OUT)¶

Bookmarks are known as outline items in PDF. They are specified by using the pdfmark operator with the feature name OUT.

The syntax for a bookmark pdfmark is as follows:

 [/Title
string

 /Count
int

 /Color
array

 /F
integer
 …Action-specifying key–value pairs…

 /OUT pdfmark

Bookmark attributes

	Key
	Type
	Semantics

	Title
	string
	Required. The bookmark’s text. The encoding and character set used is either PDFDocEncoding (as described in the PDF Reference) or Unicode. If Unicode, the string must begin with <FEFF>. For example, the Unicode string for (ABC) is <FEFF004100420043>. Title has a maximum length of 255 PDFDocEncoding characters or 126 Unicode values, although a practical limit of 32 characters is advised so that it can be read easily in the Acrobat viewer.

	Count
	integer
	Required if the bookmark has subordinate bookmarks, omitted otherwise. This key’s absolute value is the number of bookmarks immediately subordinate—that is, excluding subordinates of subordinates. If the value is positive, the bookmark is open, revealing its subordinates; if negative, the bookmark is closed, hiding its subordinates.

	This differs from the PDF Count key, which represents the total number of open descendants at all lower levels of the outline hierarchy.

	Color
	array
	Optional. The bookmark’s color. The value is an array containing three numbers (red, green, and blue), each of which must be between 0 and 1, inclusive, specifying a color in the DeviceRGB color space. (See the PDF Reference for a description of this color space.)

	F
	integer
	Optional. The style of the bookmark. Four styles are implemented:

	0 — Plain (the default)

	1 — Italic

	2 — Bold

	3 — Bold and Italic

In addition to the keys listed in the table Bookmark attributes, a bookmark must contain key–value pairs that specify an action. See Actions and Destinations for more information.

The bookmark pdfmarks can begin anywhere in the PostScript language file. However, they must appear in sequential order.

	Bookmark examples

[/Count 2 /Page 1 /View [/XYZ 44 730 1.0] /Title (Open Actions) /OUT pdfmark
[/Action /Launch /File (test.doc) /Title (Open test.doc) /OUT pdfmark
[/Action /GoToR /File (test.pdf) /Page 2 /View [/FitR 30 648 209 761]
 /Title (Open test.pdf on page 2) /OUT pdfmark

[/Count 2 /Page 2 /View [/XYZ 44 730 1.0] /Title (Fixed Zoom) /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 2.0] /Title (200% Magnification) /OUT pdfmark
[/Count 1 /Page 2 /View [/XYZ 44 730 4.0] /Title (400% Magnification)
 /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 5.23] /Title (523% Magnification) /OUT pdfmark

[/Count 3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of Contents #1)
 /OUT pdfmark
[/Page 1 /View [/XYZ 44 730 1.0] /Title (Page 1 - 100%) /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 2.25] /Title (Page 2 - 225%) /OUT pdfmark
[/Page 3 /View [/Fit] /Title (Page 3 - Fit Page) /OUT pdfmark

[/Count -3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of Contents #2)
 /OUT pdfmark
[/Page 1 /View [/XYZ null null 0] /Title (Page 1 - Inherit) /OUT pdfmark
[/Page 2 /View [/XYZ null null 0] /Title (Page 2 - Inherit) /OUT pdfmark
[/Page 3 /View [/XYZ null null 0] /Title (Page 3 - Inherit) /OUT pdfmark

[/Count 1 /Page 0 /Title (Articles) /OUT pdfmark
[/Action /Article /Dest (Now is the Time) /Title (Now is the Time) /OUT pdfmark

% Bookmark with color and style (new in Acrobat 5.0)

[/Count 0
 /Title (The Adobe home page)
 /Action /Launch
 /URI (http://www.adobe.com)
 /C [1 0 0]
 /F 3
 /OUT pdfmark

% Bookmark with a URI as an action

[/Count 0 /Title (The Adobe home page)
 /Action << /Subtype /URI /URI (http://www.adobe.com)>> /OUT pdfmark

Document Info dictionary (DOCINFO)¶

A document’s Info dictionary contains key–value pairs that provide various pieces of information about the document. Info dictionary information is specified by using the pdfmark operator in conjunction with the name DOCINFO.

The syntax for specifying Info dictionary entries is as follows:

 [/Author
string

 /CreationDate
string

 /Creator
string

 /Producer
string

 /Title
string

 /Subject
string

 /Keywords
string

 /ModDate
string

 /DOCINFO pdfmark

All the allowable keys are strings, and they are all optional. In addition to the keys listed in the following table, arbitrary keys (which must also take string values) can be specified.

Info dictionary attributes

	Key
	Type
	Semantics

	Author
	string
	Optional. The document’s author

	CreationDate
	string
	Optional. The date the document was created. See the description of the ModDate key for information on the string’s format.

	Creator
	string
	Optional. If the document was converted to PDF from another form, the name of the application that originally created the document

	Producer
	string
	Optional. The name of the application that converted the document from its native form to PDF.

Note

Distiller ignores the setting of this attribute.

	Title
	string
	Optional. The document’s title.

	Subject
	string
	Optional. The document’s subject.

	Keywords
	string
	Optional. Keywords relevant for this document. These are used primarily in cross-document searches.

	ModDate
	string
	Optional. The date and time the document was last modified. It should be of the form:

(D:YYYYMMDDHHmmSSOHH’mm’)

D: is an optional prefix. YYYY is the year. All fields after the year are optional. MM is the month (01-12), DD is the day (01-31), HH is the hour (00-23), mm are the minutes (00-59), and SS are the seconds (00-59). The remainder of the string defines the relation of local time to GMT. O is either + for a positive difference (local time is later than GMT) or - (minus) for a negative difference. HH’ is the absolute value of the offset from GMT in hours, and mm’ is the absolute value of the offset in minutes. If no GMT information is specified, the relation between the specified time and GMT is considered unknown. Regardless of whether or not GMT information is specified, the remainder of the string should specify the local time.

Info dictionary pdfmarks can occur anywhere in the PostScript language file.

	Info dictionary

[/Title (My Test Document)
 /Author (John Doe)
 /Subject (pdfmark 3.0)
 /Keywords (pdfmark, example, test)
 /Creator (Hand programmed)
 /ModificationDate (D:19940912205731)
 /ADBETest_MyKey (My private information)
 /DOCINFO pdfmark

Document open options (DOCVIEW)¶

A PDF file can specify the following to determine what happens when it is opened:

	The way the document is displayed. The options are: the document only, the document plus thumbnail images, the document plus bookmarks, or just the document in full screen mode.

	A location other than the first page that is to be displayed.

	An optional action that occurs.

The above information is contained in key–value pairs in the document’s Catalog dictionary. This information can be set using the pdfmark operator in conjunction with the name DOCVIEW.

The syntax for specifying Catalog dictionary entries is as follows:

[/PageMode name
 …Action-specifying key–value pairs…
 /DOCVIEW pdfmark

The PageMode key specifies how the document is to be displayed when opened. It can take the following values:

	UseNone — Open the document, displaying neither bookmarks nor thumbnail images.

	UseOutlines — Open the document and display bookmarks.

	UseThumbs — Open the document and display thumbnail images.

	FullScreen — Open the document in full screen mode.

If PageMode is not specified, the value defaults to UseNone.

The DOCVIEW pdfmark can also specify a destination (a page to which the document should be opened) or an action, by using additional key–value pairs. See Actions and Destinations for details about the key–value pairs that can be used.

DOCVIEW pdfmarks can occur anywhere in the PostScript language file.

	File Open action

[/PageMode /UseOutlines
 /Page 2 /View [/XYZ null null null]
 /DOCVIEW pdfmark

Embedded file content (EMBED)¶

The pdfmark feature EMBED enables the embedding of file content into a PDF document.

The syntax for specifying EMBED dictionary entries is as follows:

[/Name (Unicode Name)
 /FS << /Type /Filespec /F (name) /EF << /F {streamName} >> >>
 EMBED pdfmark

The EMBED pdfmark directs Adobe Distiller to embed files in the EmbeddedFiles dictionary of the PDF document’s name tree. The following PDF segment is an example of an EmbeddedFiles dictionary.

<< /Type /Catalog % The catalog dictionary

 /Names % The name dictionary

 << /EmbeddedFiles % One particular name tree

 << /Names % The name tree node

 [
 (Unicode Name) % Unique Unicode string used for Acrobat access

 << % The file specification dictionary

 /F (name) % The file name for export

 /EF << ... >> % Embedded file stream dictionary

 >>
]
 >>
 >>
 >>

For example:

 [/NamespacePush pdfmark
 [/_objdef {fstream} /type /stream /OBJ pdfmark
 [{fstream} << /Type /EmbeddedFile >> /PUT pdfmark
 [{fstream} (Simulating file content here) /PUT pdfmark
 [/Name (
Unicode Unique Name
)
% e.g., <feff 0041 0073> is Unicode for "As"

 /FS <<
 /Type /Filespec
 /F (myfile.txt)
 /EF << /F {fstream} >>
 >>
 /EMBED pdfmark
 [{fstream} /CLOSE pdfmark
 [/NamespacePop pdfmark

Distiller command line options to enable file embedding¶

Acrobat Distiller 8.1 and later permit PostScript operators to access only font files, char map files, and files within the installation directory. In contrast, Acrobat Distiller 8.0 and earlier permit unlimited file access. This change was introduced to address security concerns.

To reflect the change in file access behavior, the Distiller command line option (Windows and UNIX) or user preference (Mac) related to file embedding were also reversed, but in the opposite direction. In Acrobat Distiller 8.1 and later, these Distiller command line options enable unlimited file access, overriding the normal mode of restricting file access. In Acrobat Distiller 8.0 and earlier, these command line options specified limited file access (restricted to fonts, char map files, and files within the installation directory), overriding the normal mode of unrestricted file access.

To use the EMBED pdfMark directive to embed files other than fonts and char maps, follow these version-specific guidelines on invoking Acrobat Distiller:

Acrobat Distiller 8.1 and later: Include the Distiller command line option (Windows and UNIX) or user preference (Mac) that enables unlimited file access. You should be aware that such unlimited access can pose security problems. The following Windows command line invokes Acrobat Distiller with the option that specifies unlimited file access.

acrodist -F MyFileContainingPDFMarkEMBED.ps

Acrobat Distiller 8.0 and earlier: Omit the file-embedding Distiller command line option (Windows and UNIX) or user preference (Mac) that restricts unlimited file access. The following Windows command line invokes Acrobat Distiller. The omission of the -F command line option specifies unlimited file access.

acrodist MyFileContainingPDFMarkEMBED.ps

To summarize, in 8.0 and earlier the command line switch “restricts” unlimited file access. In 8.1 and later the command line switch “enables” unlimited file access.

For information on the file-embedding Distiller command line option (Windows and UNIX) and user preference (Mac), see the Distiller API Reference.

Graphics encapsulation (BP, EP, SP)¶

Distiller allows a PostScript language program to specify that a given set of graphical operations should be encapsulated and treated as a single object. The pdfmark features BP (Begin Picture) and EP (End Picture) enclose a set of graphic operations. The SP (Show Picture) pdfmark indicates where to insert an object (which may be inserted in more than one place).

The syntax for the graphics encapsulation commands is as follows:

[/_objdef {objname} /BBox [xll yll xur yur] /BP pdfmark
 ... page marking instructions ...
 [/EP pdfmark
 [{objname} /SP pdfmark

The _objdef {objname} key–value pair in the BP pdfmark names the picture objname. Any subsequent pdfmark can refer to this object.

Note

Graphics names are in the namespace governed by NamespacePush and NamespacePop , defined in Namespaces.

The BBox key is an array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates—in user space—of the rectangle defining the graphic’s bounding box.

When Distiller sees a BP pdfmark , it forks the distillation from the current context and distills subsequent graphics into a PDF Form object. When it encounters an EP pdfmark, Distiller finishes the Form object, and distillation continues in the original context. BP and EP pdfmark operators can be nested.

The SP pdfmark tells Distiller to insert a use of a named picture in the current context—in the same manner as if it were a cached PostScript form painted with the execform PostScript language operator. It includes the picture in the current context (page, form, and so forth) using the current transformation matrix (CTM) to position the graphic.

In addition to using SP to insert pictures, other pdfmark features that allow specifying named objects can add pictures built using BP and EP to a page.

The following examples demonstrate graphic encapsulation.

	Creating a picture

This PostScript language sample draws a gray rectangle, then builds a picture enclosed by the BP and EP pdfmarks. The picture is simply an X. It shows the picture in three places on the page using the SP pdfmark, then draws another gray rectangle.

% draw a gray rectangle
0.5 setgray
0 0 100 100 rectfill

% create a picture
[/BBox [0 0 100 100] /_objdef {MyPicture} /BP pdfmark

0 setgray
0 0 moveto 100 100 lineto stroke
100 0 moveto 0 100 lineto stroke
[/EP pdfmark

% make the picture appear on the page

[{MyPicture} /SP pdfmark
% make the picture appear in another place on the page
gsave
200 200 translate
[{MyPicture} /SP pdfmark
grestore

% make the picture appear in another place on the page at a different size

gsave
100 400 translate
.5 .5 scale
[{MyPicture} /SP pdfmark
grestore

% draw another gray rectangle

0.5 setgray
512 692 100 100 rectfill showpage

The resulting page stream in the PDF file contains the following:

0.5 g
 0 0 100 100 re f
 q 1 0 0 1 0 0 cm /Fm1 Do Q
 q 1 0 0 1 200 200 cm /Fm1 Do Q
 q 0.5 0 0 0.5 100 400 cm /Fm1 Do Q
 512 692 100 100 re f

The graphics between the BP and the EP pdfmarks have been saved in a Form object, which has this stream:

0 g
 0 0 m
 100 100 l
 100 0 m
 0 100 l
 S

The resulting page looks like this:

	Using BP and EP pdfmarks to define button faces for forms

Even if you define the pdfmark operator so that a PostScript interpreter ignores any text between a mark and a pdfmark, any PostScript operators between the BP and EP pdfmarks are still processed. To avoid printing anything between the BP and EP pdfmarks, use a conditional construct like the one shown in this example.

This code defines common objects that can be used by widgets for forms.

 % AcroForm Begin
 [/BBox [0 0 100 100] /_objdef {Check} /BP pdfmark
 {0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 0 7 moveto (4) show}
 ?pdfmark
 [/EP pdfmark

 [/BBox [0 0 100 100] /_objdef {Cross} /BP pdfmark
 {0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 9.7 7.3 moveto (8) show}
 ?pdfmark
 [/EP pdfmark

 % Up/Down button appearances

 [/BBox [0 0 200 100] /_objdef {Up} /BP pdfmark
 {
 0.3 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto
 2 98 lineto 198 98 lineto 196 96 lineto 4 96 lineto 4 4 lineto fill
 0.34 setgray 198 98 moveto
 198 2 lineto 2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill
 0 setgray 8 22.5 moveto 1 0 0 setrgbcolor /Helvetica 72 selectfont (Up) show
 }
if
[/EP pdfmark

[/BBox [0 0 200 100] /_objdef {Down} /BP pdfmark
 {
 0.7 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto
 2 98 lineto 198 98 lineto 196 96 lineto 4 96 lineto 4 4 lineto fill
 0.34 setgray 198 98 moveto
 198 2 lineto 2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill
 0 setgray 8 22.5 moveto 0 0 1 setrgbcolor /Helvetica 72 selectfont (Down) show
 }
 ?pdfmark
 [/EP pdfmark

 % Submit button appearances

 [/BBox [0 0 250 100] /_objdef {Submit} /BP pdfmark
 {
 0.6 setgray 0 0 250 100 rectfill 1 setgray 2 2 moveto
 2 98 lineto 248 98 lineto 246 96 lineto 4 96 lineto 4 4 lineto fill
 0.34 setgray 248 98 moveto
 248 2 lineto 2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill
 /Helvetica 76 selectfont 0 setgray 8 22.5 moveto (Submit) show
 }
 ?pdfmark
 [/EP pdfmark

 [/BBox [0 0 250 100] /_objdef {SubmitP} /BP pdfmark
 {
 0.6 setgray 0 0 250 100 rectfill 0.34 setgray 2 2 moveto
 2 98 lineto 248 98 lineto 246 96 lineto 4 96 lineto 4 4 lineto fill
 1 setgray 248 98 moveto
 248 2 lineto 2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill
 /Helvetica 76 selectfont 0 setgray 10 20.5 moveto (Submit) show
 }
 ?pdfmark
 [/EP pdfmark

For more information on forms, see Structure examples. For the definition of ?pdfmark, see Usage with standard PostScript interpreters.

Marked content (MP, DP, BMC, BDC, EMC)¶

PDF 1.2 introduced marked content operators , which identify (mark) a portion of a PDF document as elements that can be processed by an application or plug-in.

Several pdfmark names can be used to specify marked content:

	MP and DP designate a single marked-content point in the document’s content stream.

	BMC , BDC , and EMC bracket a marked-content sequence of objects in the content stream. These are complete graphics objects, not just a sequence of bytes.

Note

Marked content can also be used in conjunction with PDF’s logical structure facilities. See Logical Structure for information about pdfmark features that implement logical structure.

Marked-content points¶

MP creates a marked-content point in the PDF file. DP creates a marked-content point, with an associated property list. Their syntax is as follows:

 [
tag

 /MP pdfmark
 [
tag
 property-list

 /DP pdfmark

The tag is an optional name object indicating the role or significance of the point. The property-list is a dictionary containing key-value pairs that are meaningful to the program creating the marked content.

Marked-content sequences¶

BMC and BDC begin a marked-content sequence, and EMC ends a sequence. Their syntax is as follows:

 [
tag
 /BMC pdfmark
 [
tag
 property-list

 /BDC pdfmark
 [/EMC pdfmark

The tag is an optional name for the sequence. The property-list is a dictionary containing key-value pairs that are meaningful to the program creating the marked content.

Metadata (Metadata)¶

The ability to add metadata to the Catalog was added in Distiller 6.0. The syntax for the Metadata feature is as follows:

 [{Catalog} {
XMPStreamName
} /Metadata pdfmark

In future releases of Distiller, metadata may be attached to objects other than the Catalog object.

If the target is not the Catalog object or if DSC processing is enabled and this feature is located within Encapsulated PostScript (EPS), then this feature is ignored. Otherwise, the metadata associated with the stream XMPStreamName is added to the Catalog object with the key Metadata. See the PDF Reference for more information.

	Metadata example

[/_objdef {myMetadata} /type stream /OBJ pdfmark
 [{myMetadata} currentfile 0 (% -- end --) /SubFileDecode filter /PUT pdfmark
 <?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
 <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 ...
 % -- end --
 [{myMetadata} << /Type /Metadata /Subtype /XML>> /PUT pdfmark
 [{Catalog} {myMetadata} /Metadata pdfmark

Named images (NI)¶

The NI pdfmark gives a name to a PostScript image. Subsequently, the name can be used to refer to the image in the same way that a named object is referenced. For example, an image can be included in PDF logical structure with StOBJ (see StOBJ) so that it can be included later in element content. The example in Using OBJ and PUT pdfmarks to create an alternate image shows using NI with an alternate image.

The syntax for defining an image name is as follows:

 [/_objdef {
objname
}
 /NI pdfmark

NI takes the standard _objdef key to name the image within Distiller. Image names are in the namespace governed by NamespacePush and NamespacePop , defined in Namespaces.

The image named by an NI command is to be found subsequently in the PostScript source file, but it does not need to immediately follow the NI. An image is assigned the name given by the most recent NI not yet paired with an image.

In other words, Distiller maintains a stack of names pushed by NI and popped by the occurrence of an image. If an image is encountered when this stack is empty, it is not an error: the image simply does not receive a name.

Page crops (PAGE, PAGES)¶

Page cropping is used to specify the dimensions of a page or pages in a PDF file that will be displayed or printed, without altering the actual data in the file. Cropping is specified by using the pdfmark operator with the names PAGE (for an individual page) or PAGES (for the entire document).

The syntax for specifying a non-default page cropping for a particular page in a document is as follows:

 [/CropBox [
xll yll xur yur
]

 /PAGE pdfmark

The syntax for specifying the default page cropping for a document is as follows:

 [/CropBox [
xll yll xur yur
]

 /PAGES pdfmark

The CropBox key is an array representing the location and size of the viewable area of the page. CropBox is an array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates—measured in default user space—of the rectangle defining the cropped page. The minimum allowed page size is .04 x .04 inch (3 x 3 units) and the maximum allowed page size is 200 x 200 inches (14,400 x 14,400 units) in the default user space coordinate system.

The PAGE pdfmark must be placed before the showpage operator for the page it is to affect. It is recommended that it be placed before any marks are made on the page. For example, it affects only the first page of a document if it is placed before any marks are made on the first page.

The PAGES pdfmark can be placed anywhere in the PostScript language program, but it is recommended that it be placed at the beginning of the file, in the Document Setup section between the document structuring comments %%BeginSetup and %%EndSetup , before any marks are placed on the first page.

	Crop this page

% ...

[/CropBox [0 0 288 288] /PAGE pdfmark
/Helvetica findfont 12 scalefont setfont
/DrawBorder
 {
 10 278 moveto 278 278 lineto 278 10 lineto
 10 10 lineto closepath stroke
 } bind def
%%EndSetup
%%Page: 1 1
DrawBorder
75 250 moveto (This is Page 3) show
75 230 moveto (Click here to go to page 1.) show
75 200 moveto (Click here to open test.doc.) show

	Crop all pages

% ...

[/CropBox [54 403 558 720] /PAGES pdfmark
/DrawBorder
 {
 58 407 moveto 554 407 lineto 554 716 lineto
 58 716 lineto closepath stroke
 } bind def
/Helvetica findfont 10 scalefont setfont
%%EndSetup
%%Page: 1 1
DrawBorder
75 690 moveto (This is Page 1) show
75 670 moveto (Below is a closed, default note created using pdfmark:) show
75 570 moveto (Below is an open note with a custom color and label:) show
400 670 moveto (Below is a closed note) show
400 655 moveto (containing private data:) show
400 570 moveto (Below is a custom annotation.) show
400 555 moveto (It should appear as an unknown) show
400 540 moveto (annotation icon:) show

Page label and plate color (PAGELABEL)¶

The PAGELABEL pdfmark allows specification of the page label for a given page. Page labels can be strings like “iv” or “3-24”, and do not necessarily correspond to the actual page numbers, which run consecutively. See the PDF Reference for details.

Its syntax is as follows:

 [/Label
string

 /PlateColor
string

 /PAGELABEL pdfmark

Both the Label and PlateColor keys are optional. Label takes a string representing the page label for the page on which the pdfmark appears.

PlateColor takes an optional string representing a device colorant. It is used in high-end printing situations where the pages are pre-separated prior to generating PDF. This means that there are multiple page objects in the PDF file (each representing a different colorant) corresponding to a single physical page.The color for each separation must be specified in a separation dictionary ; see the PDF Reference for details.

Consecutive pages that specify PlateColor , with the same value for Label , are placed in the same separation group. The last instance of a Label or PlateColor on a page overrides any earlier settings of the same key on the same page.

	Page Label

%%Page: Sec1:2 1
%%PlateColor: Cyan
[/Label (Sec1:1) /PlateColor (Cyan) /PAGELABEL pdfmark

%%Page: iii 3
[/Label (iii) /PAGELABEL pdfmark

Transparency (SetTransparency)¶

PDF 1.4 extended the Adobe imaging model to include the notion of transparency. See the PDF Reference for complete information on transparency. To produce PDF files with transparency from PostScript files, use the SetTransparency pdfmark feature. This feature provides a mechanism for specifying the following graphics state parameters:

Graphics state parameters for transparency

	Key
	Value
	Meaning

	AIS
	Boolean
	The alpha source flag (“alpha is shape”), specifying whether the current soft mask and alpha constant are to be interpreted as shape values (true) or opacity values (false). Default is false.

	BM
	name or array of names
	Current blend mode. Default is Normal.

	CA
	number
	Current stroking alpha constant, specifying the constant shape or constant opacity value to be used for stroking operations. Default is 1.0.

	ca
	number
	Same as CA , but for nonstroking operation. Default is 1.0.

	SMask
	dictionary or None
	Current soft mask, specifying the mask shape or mask opacity values. Default is None.

	TK
	Boolean
	The text knockout flag, which determines the behavior of overlapping glyphs within a text object. Default is true.

The syntax of the SetTransparency feature is as follows:

 [
key–value pairs
 /SetTransparency pdfmark

where recognized key-value pairs are found in the table Graphics state parameters for transparency.

Note

The keys used by this pdfmark feature are the same as are found in PDF documents.

The arguments to the SetTransparency feature are checked for correct types and values. Unrecognized keys are ignored and their values are neither checked nor written to the PDF document. If no recognized key-value pairs are presented, then this feature adds no transparency information to the PDF document.

The values set by this feature are subject to gsave/grestore. For example:

[/ca .8 /SetTransparency pdfmark % Nonstroking alpha is now .8
 gsave
 [/ca .7 /SetTransparency pdfmark % Nonstroking alpha is now .7
 grestore
 % Nonstroking alpha is now .8

The initgraphics operator resets all of the graphics state parameters for transparency to the defaults as shown in the table Graphics state parameters for transparency.

The following PostScript code demonstrates a use of the SetTransparency feature using Normal blend mode with differing opacities.

	Transparencies

/DeviceCMYK setcolorspace 15 setlinewidth
 [/ca .6 /CA .3 /BM /Normal /SetTransparency pdfmark
 0 1 1 0 setcolor 220 330 150 0 360 arc fill % red
 0 0 1 0 setcolor 320 503 150 0 360 arc fill % yellow
 1 1 0 0 setcolor 420 330 150 0 360 arc fill % blue
 1 0 0 0 setcolor 230 440 104 0 360 arc stroke % cyan
 0 1 0 0 setcolor 410 440 104 0 360 arc stroke % magenta
 0 0 1 0 setcolor 320 284 104 0 360 arc stroke % yellow

Compare this to the following in which the blend mode has been changed:

/DeviceCMYK setcolorspace 15 setlinewidth
 [/ca .6 /CA .3 /BM /Difference /SetTransparency pdfmark

 0 1 1 0 setcolor 220 330 150 0 360 arc fill % red
 0 0 1 0 setcolor 320 503 150 0 360 arc fill % yellow
 1 1 0 0 setcolor 420 330 150 0 360 arc fill % blue
 1 0 0 0 setcolor 230 440 104 0 360 arc stroke % cyan
 0 1 0 0 setcolor 410 440 104 0 360 arc stroke % magenta
 0 0 1 0 setcolor 320 284 104 0 360 arc stroke % yellow

Note that filling and stroking the same path results in the use of the PDF f and S operators and not the B operator. This produces a “double border” effect and is not usually desirable.

/DeviceCMYK setcolorspace 15 setlinewidth
 [/ca .6 /CA .3 /BM /Normal /SetTransparency pdfmark

 0 1 1 0 setcolor 220 330 150 0 360 arc % red path
 gsave fill grestore stroke % fill, then stroke
 0 0 1 0 setcolor 320 503 150 0 360 arc % yellow path
 gsave fill grestore stroke % fill, then stroke
 1 1 0 0 setcolor 420 330 150 0 360 arc % blue path
 gsave fill grestore stroke % fill, then stroke

Transparency group XObject and soft mask¶

To specify a soft mask dictionary in a graphics state, it is necessary to define and access a transparency group XObject—a form XObject with a Group entry.

Transparency group XObject

Soft mask dictionaries

Soft mask images

See the PDF Reference for complete information.

Transparency group XObject¶

There are two PostScript idioms that create a Form XObject with Distiller: the execform operator and the BP pdfmark feature. In Distiller 6.0 and later, each of these recognize the Group key that is used to indicate a transparency group. Two forms with differing Group content are considered to be different. The syntax for these two idioms are:

 << /FormType 1
 /BBox [xll yll xur yur]
 /Group
group-dictionary

 ...
 >>

 [/_objdef {myForm}
 /BBox [xll yll xur yur]
 /Group
group-dictionary

 ...
 /BP pdfmark

Soft mask dictionaries¶

Because Distiller is configured to use execform (not /Form defineresource), there is no direct way for Distiller to access a PostScript form dictionary if it is not used by execform. But a form used by execform will always leave marks on the page. So the way to create a soft mask dictionary is to create a transparency group form XObject using the BP pdfmark feature, then to refer to this form in the soft mask dictionary in the Graphics state. For example:

 [/_objdef {myForm} % Name to be used by G in Soft Mask below

 /BBox [
xll yll xur yur
]
 /Group
dict

 /BP pdfmark
 ...
define the shapes here

 /EP pdfmark

 % Set the soft mask in Graphics state

 [/SMask << /S /Alpha /G {myForm} >> /SetTransparency pdfmark

Here is another example.

	Soft mask dictionaries

280 0 translate
 /DeviceCMYK setcolorspace

 % Draw the background...

 0 0 0 0.2 setcolor 10 540 100 200 rectfill
 1 1 1 0 setcolor 10 540 200 200 rectstroke

 % Define the form...

 [/_objdef {aForm} /BBox [10 540 210 740]
 /Group << /S /Transparency /K true>> /BP pdfmark
 /DeviceCMYK setcolorspace
 0.14 0.85 0.77 0.03 setcolor 72 600 50 0 360 arc fill
 0.12 0.02 0.78 0 setcolor 110 650 50 0 360 arc fill
 0.93 0.69 0.07 0.01 setcolor 147 600 50 0 360 arc fill
 [/EP pdfmark

 % Draw the form...

 gsave
 [/ca 0.5 /BM /Normal /SetTransparency pdfmark
 [{aForm} /SP pdfmark
 grestore

 % Use the Form as Soft Mask...

 [/SMask << /S /Alpha /G {aForm} >> /SetTransparency pdfmark
 ...

Soft mask images¶

There are two ways to specify a soft mask in PDF: a soft-mask dictionary in the Graphics state as described above, and a soft-mask image associated with another image XObject (as an SMask entry).

A soft-mask image XObject has the same entries as an ordinary image XObject, with some restrictions:

	ColorSpace must be DeviceGray.

	Matte is an array of component values in the color space of the parent image.

	Width and Height must be the same as in the parent image if Matte is present.

	ImageMask must be false or absent.

	Mask and SMask must be absent.

	BitsPerComponent is required.

Distiller has a mechanism for naming and identifying image objects using the NI pdfmark feature. To support soft masks, NI also recognizes three additional entries: IsSoftMask , Matte , and SMask.

NI pdfmark

	Key
	Value
	Comments

	/_objdef
	{nameobject}
	A name object assigned to the next image.

	IsSoftMask
	Boolean
	Default is false.

	Matte
	array
	Array of component values specifying matte color with which the parent image data has been pre-blended.

	SMask
	{SoftMaskImageName}
	{SoftMaskImageName} must be defined already by another NI pdfmark. If SMask is present, IsSoftMask must be false.

Using the NI pdfmark feature, you must define the soft-mask image first and then use it as the SMask entry for the parent image. For example:

	Soft mask images

 \[/_objdef {mySoftMask}
 % Name assigned to the next image.

 /SoftMask true % Next image {mySoftMask123} is a soft mask.

 /Matte [.1 .2 .3]
 /NI pdfmark

 ... define the soft mask image (ColorSpace must be /DeviceGray)

 [/_objdef {myImage}
 % Name assigned to next image.

 /SMask {mySoftMask} % Associate soft mask
{mySoftMask123}

 /NI pdfmark

... define the image here

In this example, the image’s ColorSpace must have three components and the image data must be preblended with [.1 .2 .3].

 © Copyright 2022, Adobe Inc..

 Last updated on May 02, 2023.

