

	
	 	

 Acrobat and PDFL Developer Guides

 Acrobat-PDFL SDK Documentation

 	Acrobat and PDFL SDK Documentation	Master search and TOC
	Documentation
	Related specifications	PDF Reference
	Other formats
	12.x Legacy docs
	11.x and earlier documentation

	Acrobat-PDFL SDK: Overview	Acrobat-PDFL SDK: Overview	Developer support
	Licensing and distribution	Acrobat Reader
	Additional resources
	Technical and licensing limitations

	Samples provided with the Acrobat SDK
	Developing for Acrobat Reader	Acrobat vs. Reader
	Acrobat Reader plug-in guidelines
	Reader enabled plugins

	SDK technologies and options	JavaScript
	Plug-ins
	JavaScript vs. plugins: pros and cons
	Interapplication communication
	Viewing PDF documents from an external application
	Controlling Acrobat from an external application
	Adobe PDF Library

	Sandbox Broker Extensibility	Extending broker APIs at run time
	Components	Plugin (PI)
	Sandbox process
	Broker process (The broker process running with full rights)
	Plugin broker (The plugin broker process that extends the broker APIs at runtime)
	SandboxHFT (Public HFT provided by sandbox for broker extensibility)
	IPC channel between plugin and plugin broker, 1->6->4
	simple-ipc-lib and SandboxPISDK
	Building a plug-in
	Building a plugin’s broker process

	Handshake between plugin and plugin broker
	Implement CrossCalls (make calls from plug-in to plug-in’s broker process)	Changes required in the plugin (client)
	Changes required in the plugin’s broker (server)

	PDF File Creation	Creating PDF files from an authoring application	Acrobat Distiller
	Automated creation of PDF documents from Windows
	Automatic generation of advanced Acrobat features
	Attaching a native document to a PDF file
	Batch processing with Distiller
	Tagged PDF documents

	Creating PDF files using plug-ins or JavaScript	Empty PDF files
	PDF files from multiple files

	Creating PDF files without using Acrobat

	Working with PDF Features	Navigation in PDF documents	Bookmarks
	Thumbnails
	Links
	Actions for special effects

	PDF page manipulation	Page content
	Document logical structure
	Other ways of modifying PDF documents

	Watermarks
	Spell-checking
	Multimedia
	Printing PDF files
	Embedded fonts

	User Interface Modifications	Menu items and menus	Menu items
	Menus

	Toolbars	Items on a toolbar
	Toolbar creation

	Customization of Acrobat Help	About dialog box and splash screen
	Plug-in help files

	Annotations and Online Collaboration	About annotations	Annotations and JavaScript
	Annotations with plug-ins or IAC

	New annotation types

	XML and the Acrobat SDK	Adobe XML architecture	XML forms model
	XML templates
	Extensible Metadata Platform

	SOAP and web services
	Conversion of PDF documents to XML format
	XML-based information

	Forms and the Acrobat SDK	Workflows for forms
	About XML forms
	About Acrobat forms	Forms API
	OLE automation

	Metadata, Accessibility, and PDF Layers	Metadata	Extensible Metadata Platform (XMP)
	Adobe XMP Toolkit

	Accessibility
	PDF layers	Creation of layered PDF files
	What you can do with layers

	Searching and Indexing	Search plug-in
	Indexes and the Catalog plug-in

	Frequently Asked Questions	Forms	What are the requirements for using Acrobat forms?
	What is the FDF Toolkit?

	PDF documents	What ActiveX solutions are available?
	Visual Basic .NET and Visual C# .NET
	What API methods are available to modify PDF documents?
	Can I modify PDFs without a C programming background?
	How can I extract text?
	How can I display a PDF in an external application window?
	Using Acrobat to view PDFs in your own application
	Are multibyte font PDF documents supported by the Acrobat SDK?
	How are security and encryption provided in PDFs?

	Full-text search	What tools are available with Acrobat for full-text search?
	What tools are available for extracting and highlighting text?
	How do I communicate with the Acrobat Search plug-in?
	How do I create custom DocInfo fields for searching?

	How do I use the Windows command line?
	How can I customize the Acrobat installer?

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Plugin Development	Acrobat-PDFL SDK: Developing Plugins	About plugins
	About the Acrobat core API	Acrobat Viewer layer
	Portable Document layer
	Acrobat Support layer
	Cos layer
	Platform-specific methods

	Acrobat core API objects	File object interrelationships
	Document object interrelationships

	Acrobat core API methods
	Data types	Scalar types
	Simple types
	Complex types
	Opaque types
	Cos types

	About PDF Library and plugin applications	Manipulating Acrobat and Adobe Reader
	Displaying a PDF document in an external window
	Indexed searching
	Modifying file access
	Creating new annotation types
	Dynamically adding text to PDF documents

	Understanding your target application	Rights-enabled PDF documents
	Adobe Reader plugins

	Registering plugins for use by the plugin finder	PDF dictionary extensions

	Understanding Plugins	Plugin loading and initialization	Handshaking
	Exporting HFTs
	Importing HFTs and registering for notifications
	Initialization
	Unloading
	Summarizing a plugin’s life cycle

	Using callback functions
	Notifications
	Handling events	Mouse clicks
	Adjust cursor
	Key presses

	Using plugin prefixes	Obtaining a developer PDF name prefix
	Using a developer prefix

	Modifying the Acrobat or Adobe Reader user interface	Adding or removing menus and menu items
	Modifying toolbars
	Controlling the About box and splash screen
	Creating help files
	User interface guidelines

	Acquiring and releasing objects
	Debugging plugins
	Page view layers
	Minimizing screen redrawing
	Storing private data in PDF files
	Exporting data from PDF document objects

	Creating Plugin and PDF Library Applications	Working with platform-specific techniques	About platform-dependent data
	Portability techniques
	Windows techniques
	Mac OS techniques

	Creating a sample plugin	Including Acrobat SDK library files
	Adding the PIMain source file
	Adding application logic
	Compiling and building your plugin

	Creating a sample PDF Library application	Contents of the PDF Library SDK
	Developing applications with the Adobe PDF Library
	Initialization and termination
	Multithreading

	Upgrading existing plugins	Detecting supported APIs

	Migrating PDFL apps to Xcode

	Inserting Text into PDF Documents	Creating a new PDF document
	Creating a new page
	Creating a container
	Acquiring fonts
	Creating a PDEGraphicState object
	Creating an ASFixedMatrix object
	Inserting text
	Saving the PDF document
	Examining a PDFL app source file

	Working with Documents and Files	Opening PDF documents
	Opening a PDF in an external window	Creating a Window
	Defining the parameters for an external window
	Creating a handler for an external window
	Displaying an open dialog box
	Displaying a PDF in a window

	Determining the PDF version	PDF version
	PDF version extensions
	Setting the extension level of a document
	Getting the extension level of a document

	Bridging core API layers	Creating a PDDoc object
	Creating a PDDoc object for an open PDF
	Accessing non-PDF files

	Printing documents
	Working with the PDF/X format

	Creating Menus and Menu Commands	About menus	About AVmenubar typedefs
	About AVMenu typedefs
	About AVMenuItem typedefs

	Adding menu commands to menus	Adding a menu command to an existing menu
	Adding a menu command to a new menu

	Creating menu callback functions
	Determining if a menu item can be executed

	Creating Toolbars and Buttons	About toolbars	About AVToolBar typedefs
	About AVToolButton typedefs

	Retrieving toolbars
	Creating toolbar buttons	Setting help text for a button
	Setting label text
	Creating a sub-menu for a button

	Retrieving existing toolbar buttons
	Attaching a button to a toolbar
	Exposing a button in a web browser
	Removing a button from a toolbar
	Creating toolbar button callback functions

	Creating Annotations	Working with text annotations	Creating text annotations
	Retrieving existing annotations
	Modifying text annotations

	Working with redaction annotations	Creating a redaction annotation
	Modifying an existing redaction annotation
	Applying redaction annotations (removing redacted content)

	Working with Bookmarks	About bookmarks
	Creating bookmarks	Defining bookmark actions
	Removing bookmark actions
	Opening and closing bookmarks

	Retrieving bookmarks	Retrieving the root bookmark
	Retrieving a specific bookmark
	Retrieving all bookmarks

	Deleting bookmarks

	Working with Page Views and Contents	About page coordinates
	About page views
	Displaying page views
	Modifying page contents	Creating a PDEContent object
	Accessing page contents
	Determining page element types
	Modifying text elements

	Working with Words	About searching for words	About PDWord typedefs
	About PDWordFinder typedefs

	Creating a PDWordFinder object
	Extracting and displaying words
	Highlighting words

	Creating Handlers	About handlers
	Action handlers
	Annotation handlers
	AVCommand handlers	Creating an AVCommand handler
	Invoking AVCommands
	Configuring AVCommands
	Running commands
	Exposing AVCommands to the batch framework

	File format conversion handlers
	File specification handlers
	Selection servers
	Tool callbacks
	Window handlers
	File systems
	Progress monitors
	Transition handlers
	Adding message handling

	Registering for Event Notifications	Registering event notifications
	Unregistering event notifications

	Working with Document Security	About document security
	About security handlers	Adding a security handler
	Opening a secured file
	Saving a secured file

	Setting security for a document	Saving a file with an encryption dictionary
	Opening an encrypted file

	Working with Unicode Paths	About Unicode paths
	Creating Unicode file path application logic
	Retrieving Unicode path values	Creating an ASFileSys object
	Creating an ASFileSys object that supports Unicode paths

	Working with Host Function Tables	About host function tables
	Exporting host function tables	Creating HFT methods
	Creating HFT method definitions
	Creating HFT callback functions
	Creating new Host Function Tables
	Examining HFT header and source files

	Importing an existing HFT
	Invoking HFT methods
	Replacing HFT methods
	Migrating non-HFT PDF Library applications to HFT applications

	Working with Cos Objects	About Cos objects	About direct and indirect objects
	About Cos object types

	Working with Cos strings	Creating Cos strings
	Retrieving the string value

	Working with Cos arrays	Creating Cos arrays
	Retrieving Cos array values

	Working with Cos dictionaries	Creating Cos dictionaries
	Retrieving values from a Cos dictionary
	Querying a Cos dictionary for a key

	Working with Cos names	Creating Cos names
	Retrieving the value of a name object

	Working with Cos streams	Creating Cos streams
	Populating a PDF with a content stream

	Working with 3D Annotations	Creating 3D annotations
	Adding 3D data to an annotation	Creating the 3D annotation dictionary entries
	Specifying the 3D stream
	Setting the default view
	Setting the annotation appearance
	Setting the activation dictionary

	Parsing and Creating PRC Files	Working with the Acrobat 3D API	Versions
	Compatibility with different PRC format versions
	Compatibility between the Acrobat 3D Library and the Acrobat 3D API
	Requirements
	Data types, naming conventions, and character encoding
	Structured and recursive nature of PRC parsing

	Implementing external linking in your plugin	Implementing external linking

	Parsing a PRC file	Handling errors
	Copying the embedded PRC file to a separate file
	Initializing the Acrobat 3D API
	Parsing structure PRC entities
	Parsing tessellation PRC entities
	Parsing topology PRC entities
	Parsing PRC entities that specify graphics
	Parsing attributes that appear in an entity base
	Terminating the interface with the Acrobat 3D API

	Creating a PRC file that uses boundary representation	Error handling
	Creating a model file entity and exporting it to a physical file
	Creating structure PRC entities
	Creating representation item PRC entities
	Creating topology PRC entities
	Creating geometry PRC entities
	Defining root-level attributes for a PRC entity
	Creating a 3D annotation that references the PRC file

	Creating a tessellation entity for representing faceted objects	Create the tessellation base data
	Create the tessellation facet data

	Handling Exceptions	Creating exception handlers
	Returning a value from an exception handler
	Raising exceptions
	Exception handling scenarios	Using goto statements
	Using nested exception handlers
	Using register variables

	Working with Acrobat Extended APIs	Search extended API
	Catalog extended API
	PDF Consultant and Accessibility Checker extended API	Acrobat agents
	Reclassifying and revisiting
	Agent architecture
	How the consultant works
	Important issues for consultant development
	Importing the consultant HFTs into a plugin
	Creating and destroying consultants
	Registering agents with consultants
	Starting the consultant
	Consultant object type identification
	Creating an agent class
	Creating agent constructors
	Recognizing objects of interest
	Post processing stage

	Digital signature extended API	The PubSec layer
	Digital signature components
	Digital signature scenarios
	Initializing the digital signature plugin
	Understanding the process

	Forms extended API
	Weblink extended API	Weblink services
	Writing a custom driver

	Spelling extended API
	AcroColor extended API	Color conversion operations

	PDF Optimizer API

	Creating an Adobe Reader Plugin	Configuring preprocessor definitions
	Creating the public and private key pairs
	Enabling the plugin for Adobe Reader	Plugin to be Notarized on MacOS

	Troubleshooting an Adobe Reader plugin	Plugin appears to be ignored by Adobe Reader
	Adobe Reader error messages

	Reader Plugins	Reader enablement
	APIs available for Adobe Reader

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Interapplication Communication	Developing for Interapplication Communication	About the API object layers	Object reference syntax
	Objects in the Acrobat application layer
	Objects in the portable document layer

	Plugins for extending the IAC interfaces
	Developing for Acrobat Reader
	DDE messages
	Apple events

	Using OLE	OLE capabilities in Acrobat	On-screen rendering
	Remote control of Acrobat
	PDF browser controls

	Development environment considerations	Environment configuration
	Necessary C knowledge

	Using the Acrobat OLE interfaces	About the CAcro classes
	About the COleDispatchDriver class
	Using COleDispatchDriver objects and methods

	Using the JSObject interface	Adding a reference to the Acrobat type library
	Creating a simple application
	Working with annotations
	Spell-checking a document
	Tips for translating JavaScript to JSObject

	Other development topics	Synchronous messaging
	MDI applications
	Event handling in child windows
	Determining if an Acrobat application is running
	Exiting from an application

	Summary of OLE objects and methods

	Using DDE
	Using Apple Events
	OLE Automation	AcroExch.App	Methods
	CloseAllDocs
	Exit
	GetActiveDoc
	GetActiveTool
	GetAVDoc
	GetFrame
	GetInterface
	GetLanguage
	GetNumAVDocs
	GetPreferenceEx
	Hide
	Lock
	Minimize
	Maximize
	MenuItemExecute
	MenuItemIsEnabled
	MenuItemIsMarked
	MenuItemRemove
	Restore
	SetActiveTool
	SetFrame
	SetPreference
	SetPreferenceEx
	Show
	ToolButtonIsEnabled
	ToolButtonRemove
	Unlock
	UnlockEx

	AcroExch.AVDoc	Methods
	BringToFront
	ClearSelection
	Close
	FindText
	GetAVPageView
	GetFrame
	GetPDDoc
	GetTitle
	GetViewMode
	IsValid
	Maximize
	Open
	OpenInWindow
	OpenInWindowEx
	PrintPages
	PrintPagesEx
	PrintPagesSilent
	PrintPagesSilentEx
	SetFrame
	SetTextSelection
	SetTitle
	SetViewMode
	ShowTextSelect

	AcroExch.AVPageView	Methods
	DevicePointToPage
	DoGoBack
	DoGoForward
	GetAperture
	GetAVDoc
	GetDoc
	GetPage
	GetPageNum
	GetZoom
	GetZoomType
	Goto
	PointToDevice
	ReadPageDown
	ReadPageUp
	ScrollTo
	ZoomTo

	AcroExch.HiliteList	Add

	AcroExch.PDAnnot	Methods
	GetColor
	GetContents
	GetDate
	GetRect
	GetSubtype
	GetTitle
	IsEqual
	IsOpen
	IsValid
	Perform
	SetColor
	SetContents
	SetDate
	SetOpen
	SetRect
	SetTitle

	AcroExch.PDBookmark	Methods
	Destroy
	GetByTitle
	GetTitle
	IsValid
	Perform
	SetTitle

	AcroExch.PDDoc	Methods
	AcquirePage
	ClearFlags
	Close
	Create
	CreateTextSelect
	CreateThumbs
	CropPages
	DeletePages
	DeleteThumbs
	GetFileName
	GetFlags
	GetInfo
	GetInstanceID
	GetJSObject
	GetNumPages
	GetPageMode
	GetPermanentID
	InsertPages
	MovePage
	Open
	OpenAVDoc
	ReplacePages
	Save
	SetFlags
	SetInfo

	AcroExch.PDPage	Methods
	AddAnnot
	AddNewAnnot
	CopyToClipboard
	CreatePageHilite
	CreateWordHilite
	CropPage
	Draw
	DrawEx
	GetAnnot
	GetAnnotIndex
	GetDoc
	GetNumAnnots
	GetNumber
	GetRotate
	GetSize
	RemoveAnnot
	SetRotate

	AcroExch.PDTextSelect	Methods
	Destroy
	GetBoundingRect
	GetNumText
	GetPage
	GetText

	AcroExch.Point	X
	Y

	AcroExch.Rect	Bottom
	Left
	Right
	Top

	AcroExch.Time	Date
	Hour
	Millisecond
	Minute
	Month
	Second
	Year

	AxAcroPDFLib.AxAcroPDF	Methods
	GetVersions
	GoBackwardStack
	GoForwardStack
	GotoFirstPage
	GotoLastPage
	GotoNextPage
	GotoPreviousPage
	LoadFile
	Print
	PrintAll
	PrintAllFit
	PrintPages
	PrintPagesFit
	PrintWithDialog
	SetCurrentHighlight
	SetCurrentPage
	SetLayoutMode
	SetNamedDest
	SetPageMode
	SetShowScrollbars
	SetShowToolbar
	SetView
	SetViewRect
	SetViewScroll
	SetZoom
	SetZoomScroll
	Src

	DDE Messages	AppExit
	AppHide
	AppShow
	CloseAllDocs
	DocClose
	DocDeletePages
	DocFind
	DocGoTo
	DocGoToNameDest
	DocInsertPages
	DocOpen
	DocPageDown
	DocPageLeft
	DocPageRight
	DocPageUp
	DocPrint
	DocReplacePages
	DocSave
	DocSaveAs
	DocScrollTo
	DocSetViewMode
	DocZoomTo
	FileOpen
	FileOpenEx
	FilePrint
	FilePrintEx
	FilePrintSilent
	FilePrintSilentEx
	FilePrintTo
	FilePrintToEx
	FullMenus
	HideToolbar
	MenuitemExecute
	ShortMenus
	ShowToolbar

	Apple Event Objects and Apple Events	Objects	annotation
	application
	AVPageView
	bookmark
	conversion
	EPS Conversion
	Link Annotation
	menu
	menu item
	PDAnnot
	PDBookMark
	PDLinkAnnot
	PDPage
	PDTextAnnot
	PDF Window
	PostScript Conversion
	Text Annotation

	Required suite events	open
	print
	quit
	run

	Core suite events	close
	count
	delete
	exists
	get
	make
	move
	open
	quit
	save
	set

	Acrobat application events	bring to front
	clear selection
	close all docs
	create thumbs
	delete pages
	delete thumbs
	execute
	find next note
	find text
	get info
	go backward
	go forward
	goto
	goto next
	goto previous
	insert pages
	is toolbutton enabled
	maximize
	perform
	print pages
	read page down
	read page up
	remove toolbutton
	replace pages
	scroll
	select text
	set info
	zoom

	Miscellaneous events	do script

	Acrobat Catalog Plug-In	Catalog Windows messages
	Catalog DDE methods	AppExit
	AppFront
	FileBuild
	FileOpen
	FilePurge

	Acrobat Forms Plug-In	Forms plug-in OLE automation
	AFormApp
	Field	Methods
	PopulateListOrComboBox
	SetBackgroundColor
	SetBorderColor
	SetButtonCaption
	SetButtonIcon
	SetExportValues
	SetForegroundColor
	SetJavaScriptAction
	SetResetFormAction
	SetSubmitFormAction
	Properties
	Alignment
	BorderStyle
	BorderWidth
	ButtonLayout
	CalcOrderIndex
	CharLimit
	DefaultValue
	Editable
	Highlight
	IsHidden
	IsMultiline
	IsPassword
	IsReadOnly
	IsRequired
	IsTerminal
	Name
	NoViewFlag
	PrintFlag
	Style
	TextFont
	TextSize
	Type
	Value

	Fields	Methods
	Add
	AddDocJavascript
	ExecuteThisJavascript
	ExportAsFDF
	ExportAsHtml
	ImportAnFDF
	Remove
	Properties
	Count
	Item
	_NewEnum

	Acrobat Search Plug-in	Search plug-in using DDE	Simple query item
	Query item
	Query options
	Query language type constants
	Word option bit-flag constants
	Manipulating indexes through DDE
	Options
	Index operation selectors

	Search plug-in using Apple events	SearchAddIndex
	SearchCountIndexList
	SearchDoQuery
	Word options for Apple events
	SearchGetIndexByPath
	SearchGetIndexFlags
	SearchGetIndexList
	SearchGetIndexPath
	SearchGetIndexTitle
	SearchGetNthIndex
	SearchRemoveIndex
	SearchSetIndexFlags

	Search lists	Menu item names
	Toolbar button names

	Coordinate Systems	User space
	Device space

	Master Doc Search and TOC

	Acrobat-PDFL SDK: JavaScript APIs	Acrobat JavaScript API Reference	Version compatibility
	Overview
	Syntax	Method arguments
	Parameter help

	Paths	Safe path

	Privileged context
	Privileged versus non-privileged context
	User preferences
	Table quick key
	Domain names in code samples

	Changes Across Versions	Acrobat XI changes	Changes to PrintParams object

	Acrobat X changes	New JavaScript version
	Impact of Acrobat menu restructuring on JavaScript APIs
	New util method
	Changes to search object
	Changes to SearchExecuteQuery
	Function SearchIsLegacySearchAvailable deprecated
	Enhancements to PDFOptPDFVersion
	Enhancements to Doc object
	Signature support for Emerging PAdES ETSI ESI standard
	ADBC Support Removed from Documentation

	Acrobat 9.0 changes
	Acrobat 8.1 changes
	Acrobat 8.0 changes
	Acrobat 7.0.5 changes
	Acrobat 7.0 changes	Introduced in Acrobat 7.0
	Modified in Acrobat 7.0

	Acrobat 6.0 changes	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 changes	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe Reader 5.1

	JavaScript APIs	Alerter	Alerter methods

	AlternatePresentation	AlternatePresentation properties
	AlternatePresentation methods

	annotAttachment	annotAttachment properties

	Annotation	Annotation types
	Annotation properties
	Annotation methods

	AnnotRichMedia	AnnotRichMedia properties
	AnnotRichMedia methods

	Annot3D	Annot3D properties

	app	app properties
	app methods

	app.media	app.media properties
	app.media methods

	Bookmark	Bookmark properties
	Bookmark methods

	catalog	catalog properties
	catalog methods

	CatalogJob	CatalogJob properties

	Certificate	Certificate properties

	Collab	Collab methods

	color	Color arrays
	color properties
	color methods

	colorConvertAction	colorConvertAction properties

	Collection	Collection properties
	Collection methods

	collectionField	collectionField properties

	Column	Column properties

	ColumnInfo	ColumnInfo properties

	console	console methods

	Data	Data properties
	Data methods

	DataSourceInfo	DataSourceInfo properties

	dbg	dbg properties
	dbg methods

	Dialog	Dialog methods

	DirConnection	DirConnection properties
	DirConnection methods

	Directory	Directory properties
	Directory methods

	Embedded PDF	Embedded PDF properties
	Embedded PDF methods

	Error	Error properties
	Error methods

	event	Event type/name combinations
	Document Event Processing
	Form event processing
	Multimedia event processing
	event properties

	EventListener	EventListener methods

	Events	Events methods

	FDF	FDF properties
	FDF methods

	Field	Field versus widget attributes
	Field properties
	Field methods

	FullScreen	FullScreen properties

	global	Creating global properties
	Deleting global properties
	Global object security policy
	global methods

	HostContainer	HostContainer properties
	HostContainer methods

	Icon
	Icon Stream
	identity	identity properties

	Index	Index properties
	Index methods

	Link	Link properties
	Link methods

	Monitor	Monitor properties

	Monitors	Monitors methods

	Net	Net properties
	Net methods

	Net.HTTP	Net.HTTP methods

	OCG	OCG properties
	OCG methods
	PlayerInfo properties
	PlayerInfo methods

	PlayerInfoList	PlayerInfoList methods

	PlugIn	PlugIn properties

	PrintParams	PrintParams properties

	RDN
	ReadStream
	Rendition	Rendition properties
	Rendition methods

	Report	Report properties
	Report methods

	Row
	ScreenAnnot	ScreenAnnot properties
	ScreenAnnot methods

	search	search properties
	search methods

	security	security constants
	security properties
	security methods

	SecurityHandler	SecurityHandler properties
	SecurityHandler methods

	SecurityPolicy	SecurityPolicy properties

	SignatureInfo	SignatureInfo properties

	SOAP	SOAP properties
	SOAP methods

	Sound	Sound properties
	Sound methods

	Span	Span properties

	spell	spell properties
	spell methods

	TableInfo
	Template	Template properties
	Template methods

	Thermometer	Thermometer properties
	Thermometer methods

	this
	TTS	TTS properties
	TTS methods

	util	util methods

	XFA
	XMLData	XMLData methods

	Doc and Doc.Media APIs	Doc	Doc properties
	Doc methods

	Doc.media	Doc.media properties
	Doc.media methods

	Preflight APIs	Preflight	Preflight methods

	PreflightAuditTrail	PreflightAuditTrail properties

	PreflightProfile	PreflightProfile properties
	PreflightProfile methods

	PreflightResult	PreflightResult properties
	PreflightResult methods

	Media and Marker APIs	Marker	Marker properties

	Markers	Markers properties
	Markers methods

	MediaOffset	MediaOffset properties

	MediaPlayer	MediaPlayer properties
	MediaPlayer methods

	MediaReject	MediaReject properties

	MediaSelection	MediaSelection properties

	MediaSettings	MediaSettings properties

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Samples Guide	Acrobat SDK: Samples Guide	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer
	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard
	ShowPermissions

	Master Doc Search and TOC

	Plugin Samples	BasicPlugin
	BatesNumbering
	CapiSamples
	DdeServer	Limitations

	DMSIntegration
	DocSign
	Embed3DData
	RplcFileSystem
	SampleExtn
	SelectionServer
	Snippet Runner
	Stamper
	Starter
	UncompressPDF
	WeblinkDemo
	wxPlugin
	CustomTool

	JavaScript Samples	JavaScript Samples Portfolio
	AddSignature
	AddToolbarButton
	AnnotatedWords
	AnnotSample
	CallMediaActionScript
	ConvertDate
	DeleteNoCommentPages
	EventState
	GoToBookmark
	JSCollection
	JSCollectionDemo
	OCGLayerControl
	PresentationMonitor
	PresentationNote
	RunMediaPlayers
	ScriptEvents
	SilentPrint
	StoreFormData
	TextExtract
	TwoPartInvention

	Mac OS - Interapplication Communications	DistillerControl
	ObjectProperties
	PrintPage
	RotatePages
	SelectText
	WatermarkJsoAS

	Windows - Interapplication Communications	AcrobatActiveXVB
	AcroPDFInHTML
	ActiveViewVB
	ActiveViewVC
	AdobePDFSilentVB
	BasicIacCS
	BasicIacJsoVB
	BasicIacOCXCS
	BasicIACVB
	BasicIacVC
	DdeOpenVC
	DistillerCtrlVB
	DistillerCtrlVC
	DistillerCtrlWMVC
	ExecuteScriptIacVB
	FillFormCS
	FormsAutomationVB
	JSObjectAccessVB
	JSObjectControlCS
	JSOFindWordVB
	RemoteControlAcrobatVC
	SearchPdfVB
	StaticViewVB
	StaticViewVC
	WatermarkJsoVB

	Tools	Plugin Wizard	Limitations

	ShowPermissions

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Accessibility	Acrobat-PDFL SDK: Accessibility	Determining rendering order and logical order	Accessing documents and pages

	Processing inaccessible documents	Processing protected documents
	Processing empty documents
	Processing unavailable documents

	Handling event notifications	Retrieving an MSAA object for an event
	Retrieving a PDF DOM object for an event

	Reading PDF Files Through MSAA	Acrobat implementation of IAccessible objects
	IGetPDDomNode interface	get_PDDomNode

	ISelectText interface	selectText

	Identifying IAccessible objects in a document	get_accID

	IAccessible method summary
	Navigation and hierarchy	accNavigate
	get_accChild
	get_accChildCount
	get_accParent

	Descriptive properties and methods	accDoDefaultAction
	get_accDefaultAction
	get_accDescription
	get_accName
	get_accRole
	get_accState
	get_accValue

	Selection and focus	accSelect
	get_accFocus
	get_accSelection

	Spatial mapping	accLocation
	accHitTest

	IAccessible object types for PDF	PDF Document
	PDF Page
	PDF Protected Document
	Empty PDF Document
	PDF Structure Element
	PDF Content Element
	PDF Comment
	PDF Link
	PDF Text Form Field
	PDF Button Form Field
	PDF CheckBox Form Field
	PDF RadioButton Form Field
	PDF ComboBox Form Field
	PDF List Box Form Field
	PDF Digital Signature Form Field
	PDF Caret

	Reading PDF Files Through the DOM Interface	IPDDomNode data types	CPDDomNodeType
	PDDom_FontStyle
	FontInfoState
	DocState
	NodeRelationship

	IPDDomNode methods	Words and lines in text
	GetParent
	GetType
	GetChild
	GetChildCount
	GetName
	GetValue
	IsSame
	GetTextContent
	GetFontInfo
	GetLocation
	GetFromID
	GetIAccessible
	ScrollTo
	GetTextInLines

	IPDDomNodeExt methods	Navigate
	ScrollToEx
	SetFocus
	GetState
	GetIndex
	GetPageNum
	DoDefaultAction
	Relationship

	IPDDomDocument methods	SetCaret
	GetCaret
	NextFocusNode
	GetFocusNode
	SelectText
	GetTextSelection
	GetSelectionBounds
	GetDocInfo
	GoToPage

	IPDDomElement Methods	GetTagName
	GetStdName
	GetID
	GetAttribute

	IPDDomWord methods	LastWordOfLine

	IPDDomGroupInfo method	GetGroupPosition

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Batch Sequences	Acrobat- PDFL SDK: Using Batch Sequences	Creating and running a batch sequence	Create a batch sequence that sets the disclosed property to true:
	To select files:
	To run a batch sequence:

	Batch processing objects	Aborting a script
	Using the this object

	Global variables
	Beginning and ending a batch job
	Debugging and testing tips

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDF Creation Settings	Acrobat-PDFL SDK: PDF Creation Settings	Terminology
	Organization of settings files
	Namespaces	Common namespace
	Othernamespaces

	Predefined settings files	Where presets are installed
	System preset information

	Reading and writing settings files	Compatibility strategies
	How applications handle incorrect settings files

	How Distiller uses Adobe PDF settings	Distiller initialization
	How Distiller processes PostScript files
	Modifying settings during the job
	Using Distiller to combine PostScript files

	Using PDF Creation Settings	Using the image settings	Image compression settings
	Automatic compression
	Non-automatic compression
	Downsampling and subsampling images
	Setting compression of text, line art, and objects
	Distiller-only image settings

	Using the font settings
	Using the color conversion settings	Distiller color conversion settings
	Creative Suite color conversion settings
	Color settings interchange

	Using the advanced Adobe PDF settings	Relationship between setpagedevice keys and job ticket keys
	Relationship between PostScript comments and job ticket keys

	Using the standards settings	Using the compliance checking settings
	Using the PDF/X output intent settings
	Distiller examples

	Common PDF Settings	Settings descriptions
	General settings	AutoRotatePages
	Binding
	CompatibilityLevel
	CompressObjects
	CoreDistVersion
	Description
	DoThumbnails
	EndPage
	ExportLayers
	HWResolution
	ImageMemory
	Namespace
	Optimize
	OtherNamespaces
	PageSize
	StartPage

	Image settings
	Color image settings	AntiAliasColorImages
	AutoFilterColorImages
	ColorACSImageDict
	ColorImageAutoFilterStrategy
	ColorImageDepth
	ColorImageDict
	ColorImageDownsampleThreshold
	ColorImageDownsampleType
	ColorImageFilter
	ColorImageMinDownsampleDepth
	ColorImageMinResolution
	ColorImageMinResolutionPolicy
	ColorImageResolution
	ConvertImagesToIndexed
	CropColorImages
	DownsampleColorImages
	EncodeColorImages
	JPEG2000ColorACSImageDict
	JPEG2000ColorImageDict

	Grayscale image settings	AntiAliasGrayImages
	AutoFilterGrayImages
	CropGrayImages
	DownsampleGrayImages
	EncodeGrayImages
	GrayACSImageDict
	GrayImageAutoFilterStrategy
	GrayImageDepth
	GrayImageDict
	GrayImageDownsampleThreshold
	GrayImageDownsampleType
	GrayImageFilter
	GrayImageMinDownsampleDepth
	GrayImageMinResolution
	GrayImageMinResolutionPolicy
	GrayImageResolution
	JPEG2000GrayACSImageDict
	JPEG2000GrayImageDict

	Monochrome image settings	AntiAliasMonoImages
	CropMonoImages
	DownsampleMonoImages
	EncodeMonoImages
	MonoImageDepth
	MonoImageDict
	MonoImageDownsampleThreshold
	MonoImageDownsampleType
	MonoImageFilter
	MonoImageMinResolution
	MonoImageMinResolutionPolicy
	MonoImageResolution

	Page Compression Setting	CompressPages

	Font settings	AlwaysEmbed
	CannotEmbedFontPolicy
	EmbedAllFonts
	EmbedOpenType
	MaxSubsetPct
	NeverEmbed
	SubsetFonts

	Color conversion settings	CalCMYKProfile
	CalGrayProfile
	CalRGBProfile
	ColorConversionStrategy
	ColorSettingsFile
	DefaultRenderingIntent
	ParseICCProfilesInComments
	PreserveDICMYKValues
	PreserveHalftoneInfo
	sRGBProfile
	TransferFunctionInfo
	UCRandBGInfo

	Advanced Adobe PDF settings	AllowPSXObjects
	AllowTransparency
	ASCII85EncodePages
	AutoPositionEPSFiles
	CreateJDFFile
	CreateJobTicket
	DetectBlends
	DetectCurves
	DSCReportingLevel
	EmbedJobOptions
	EmitDSCWarnings
	LockDistillerParams
	OPM
	ParseDSCComments
	ParseDSCCommentsForDocInfo
	PassThroughJPEGImages
	PreserveCopyPage
	PreserveEPSInfo
	PreserveFlatness
	PreserveOPIComments
	PreserveOverprintSettings
	UsePrologue

	Standards settings	CheckCompliance
	PDFX1aCheck
	PDFX3Check
	PDFXBleedBoxToTrimBoxOffset
	PDFXCompliantPDFOnly
	PDFXNoTrimBoxError
	PDFXOutputCondition
	PDFXOutputConditionIdentifier
	PDFXOutputIntentProfile
	PDFXRegistryName
	PDFXSetBleedBoxToMediaBox
	PDFXTrapped
	PDFXTrimBoxtoMediaBoxOffset

	Other Namespaces	CreativeSuite namespace settings	AddBleedMarks
	AddColorBars
	AddCropMarks
	AddPageInfo
	AddRegMarks
	BleedOffset
	ConvertColors
	DestinationProfileName
	DestinationProfileSelector
	Downsample16BitImages
	FlattenerPreset
	GenerateStructure
	IncludeBookmarks
	IncludeHyperlinks
	IncludeInteractive
	IncludeLayers
	IncludeProfiles
	MarksOffset
	MarksWeight
	MultimediaHandling
	PageMarksFile
	PageMarksFileName
	PDFXOutputIntentProfileSelector
	PreserveEditing
	UntaggedCMYKHandling
	UntaggedRGBHandling
	UseDocumentBleed

	InDesign namespace settings	AsReaderSpreads
	CropImagesToFrames
	ErrorControl
	FlattenerIgnoreSpreadOverrides
	IncludeGuidesGrids
	IncludeNonPrinting
	IncludeSlug
	OmitPlacedBitmaps
	OmitPlacedEPS
	OmitPlacedPDF
	SimulateOverprint

	Conversions Related to JDF	Creation of the basic JDF file
	Representation of PostScript keys as JDF entries	Conversion of the linear representation of setpagedevice keys

	Mapping of DSC comments into JDF elements and attributes	Composite jobs
	Pre-separated jobs with interleaved separations
	Pre-separated single-colorant jobs

	Mapping of parameters into JDF elements and attributes	General
	Image compression
	Page compression
	Fonts
	Color conversion
	Advanced
	PDF/X
	Conversion of parameters not available through the user interface

	Master Doc Search and TOC

	Acrobat-PDFL SDK: PDFMark Reference	Acrobat-PDFL SDK: PDFMark Reference
	Introduction	Syntax of pdfmark operators
	Usage with standard PostScript interpreters
	Syntax for private keys
	Named objects	Built-in named objects
	User-defined named objects
	Namespaces
	Adding content to named objects

	Basic Features	Annotations (ANN)	Text annotations (notes)
	Links
	Other annotations

	Articles (ARTICLE)
	Bookmarks (OUT)
	Document Info dictionary (DOCINFO)
	Document open options (DOCVIEW)
	Embedded file content (EMBED)	Distiller command line options to enable file embedding

	Graphics encapsulation (BP, EP, SP)
	Marked content (MP, DP, BMC, BDC, EMC)	Marked-content points
	Marked-content sequences

	Metadata (Metadata)
	Named images (NI)
	Page crops (PAGE, PAGES)
	Page label and plate color (PAGELABEL)
	Transparency (SetTransparency)	Transparency group XObject and soft mask

	Actions and Destinations	Actions	GoTo actions
	GoToR actions
	Launch actions
	Article actions

	Destinations	View destinations
	Defining named destinations
	Referencing named destinations

	Logical Structure	Elements and parents
	Structure operators
	Structure Tree Root	StRoleMap
	StClassMap

	Elements	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Element content	StBMC
	StBDC
	EMC
	StOBJ

	Attribute objects	StAttr

	Storage and retrieval of the implicit parent stack	StStore
	StRetrieve

	EPS considerations
	Tagged PDF

	Examples	Building an Output Intents array
	Named object examples
	Forms examples
	Structure examples

	JDF Features	Syntax
	XPath Examples

	Distilling Optional Content	Initialization and termination code
	Procedure definitions	AddASEvent
	BeginOC
	EndOC
	GetOCGPdfmarkTag
	OCEndPage
	SetOCGInitState
	SetOCGIntent
	SetOCGUsage
	SimpleOC

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Acrobat-PDFL SDK: Extending the SaveAsXML Plugin	Sample mapping table	Root node
	Emit-string
	Walk-structure
	Define-event-list
	Define-proc-list

	Editing the mapping tables

	Mapping Table Elements Reference	Call-event-list
	Call-proc-list
	Comment
	Conditional-delimiter
	Conditional-prefix
	Conditional-suffix
	Define-event-list
	Define-proc-list
	Element-name
	Emit-all-metadata
	Emit-string
	Evaluate-var
	Event
	Proc-doc-text
	Proc-enum
	Proc-enum-choice
	Proc-fixed
	Proc-graphic-content
	Proc-hex
	Proc-image-content
	Proc-integer
	Proc-length
	Proc-pixels
	Proc-property
	Proc-string
	Proc-var
	Property-name
	Property-type
	Root
	Void
	Walk-cached-property-sets
	Walk-children
	Walk-layout
	Walk-metadata
	Walk-proplist
	Walk-structure

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Snippet Runner Cookbook	Acrobat-PDFL SDK: Snippet Runner Cookbook
	Installing and Running SnippetRunner	SnippetRunner Common Interface	Installing the Common Interface
	Starting the SnippetRunner
	Starting the Common Interface for PDFL
	Creating the configuration file

	Running as a standalone Java application
	Running as a Java applet
	Known issues
	Using the Common Interface

	Writing Snippets	Passing parameters to snippets
	Toggling behavior and asynchronous snippets
	Handling exceptions
	Handling documents

	Master Doc Search and TOC

	Acrobat-PDFL SDK: Tracker	Acrobat-PDFL SDK: Tracker APIs	Benefits of RSS
	Customizing the interface

	Tracker API	Tracker URL API	Add a subscription
	Update a subscription
	Select a subscription
	Remove a subscription
	Convert a subscription to a PDF file
	Display Tracker

	RSS XML feed extensions	Namespace
	Channel extensions
	Item extensions

	User interface driver	Dialog object
	Driver object
	Layout description object
	RSS object
	Selection object

	Customization Examples	Grouping elements
	Adding an external interface driver

	Master Doc Search and TOC

	Acrobat-PDFL SDK: 3D API Reference	Acrobat-PDFL SDK: JS 3D APIs	Object overview	Basic objects
	Scene object
	Canvas object
	Runtime object
	Console object
	Resource objects
	Event handlers
	CameraEvent
	KeyEvent
	MenuEvent
	MouseEvent
	RenderEvent
	ScrollWheelEvent
	SelectionEvent
	TimeEvent
	ToolEvent

	JavaScript Objects for Acrobat 3D	Animation
	Background	getColor
	getImage
	setColor
	setImage

	Bone
	BoundingBox
	Camera	getScreenFromPosition
	getDirectionFromScreen

	CameraEvent
	CameraEventHandler	CameraEventHandler
	onEvent

	Canvas	getCamera
	setCamera

	ClippingPlane	remove

	Color	Color
	Color
	set
	set
	set3

	Console	print
	println

	Dummy
	FlashEvent
	FlashEventHandler	onEvent
	FlashEventHandler

	FlashMovie	FlashMovie
	call
	getVariable
	gotoFrame
	isPlaying
	pan
	play
	rewind
	setVariable
	setZoomRect
	stop
	zoom

	HitInfo
	Host
	Image	Image

	KeyEvent
	KeyEventHandler	KeyEventHandler
	onEvent

	Light
	Material	attachFlashMovie

	Matrix4x4	Matrix4x4
	Matrix4x4
	invertInPlace
	isEqual
	multiply
	multiplyInPlace
	rotateWithQuaternion
	rotateWithQuaternionInPlace
	rotateAboutLine
	rotateAboutLineInPlace
	rotateAboutX
	rotateAboutXInPlace
	rotateAboutVector
	rotateAboutVectorInPlace
	rotateAboutY
	rotateAboutYInPlace
	rotateAboutZ
	rotateAboutZInPlace
	scale
	scaleInPlace
	set
	set
	set
	setIdentity
	setView
	transformDirection
	transformPosition
	translate
	translateInPlace
	transposeInPlace

	MenuEvent
	MenuEventHandler	MenuEventHandler
	onEvent

	Mesh	computeBoundingBox
	setColor

	MouseEvent
	MouseEventHandler	MouseEventHandler
	onEvent

	Node	detachFromCurrentAnimation

	Procedural
	Quaternion	Quaternion
	Quaternion
	Quaternion
	interpolate
	interpolateInPlace
	normalize

	RenderEvent
	RenderEventHandler	RenderEventHandler
	onEvent

	RenderOptions
	Resource	Resource

	Runtime	addCustomMenuItem
	addCustomToolButton
	addEventHandler
	disableTool
	enableTool
	getEventHandler
	getRendererName
	getView
	getView
	pause
	play
	refresh
	removeEventHandler
	removeCustomMenuItem
	removeCustomToolButton
	setCurrentTool
	setCustomMenuItemChecked
	setView
	setView

	Scene	activateAnimation
	addFlashForeground
	addModel
	createClippingPlane
	createLight
	createSquareMesh
	computeBoundingBox
	update

	SceneObject
	SceneObjectList	getByGUID
	getByID
	getByIndex
	getByName
	removeAll
	removeByIndex
	removeItem

	ScrollWheelEvent
	ScrollWheelEventHandler	ScrollWheelEventHandler
	onEvent

	SelectionEvent
	SelectionEventHandler	SelectionEventHandler
	onEvent

	StateEvent
	StateEventHandler	onEvent
	StateEventHandler

	Texture	getImage
	setImage

	TimeEvent
	TimeEventHandler	TimeEventHandler
	onEvent

	ToolEvent
	ToolEventHandler	ToolEventHandler
	onEvent

	Vector3	Vector3
	Vector3
	add
	addInPlace
	addScaled
	addScaledInPlace
	blend
	blendInPlace
	cross
	dot
	normalize
	scale
	scaleInPlace
	set
	set
	set3
	subtract
	subtractInPlace

	View

	Master Doc Search and TOC

 Acrobat Developer Home
 Document Services SDK
 Acrobat Sign SDK
 Acrobat SDK
 PDF Library SDK

 Console

 Acrobat-PDFL SDK Documentation

 	 »
	Acrobat-PDFL SDK: PDF Creation Settings »
	Using PDF Creation Settings
	

 Next

 Previous

Using PDF Creation Settings¶

This chapter provides information on using PDF creation settings that supplements the information in the settings reference chapters, Common PDF Settings and Other Namespaces.

Using the image settings¶

PDF settings files provide several options for the processing of images:

	Images (as well as text and line art) can be compressed , thereby significantly reducing the size of a PDF file with little or no loss of detail and precision, depending on the settings chosen.

	Images can be resampled (downsampled or subsampled), which also allows reduction in image size.

	Distiller provides some options relating to bit depth (number of bits per sample) and cropping of images.

The image settings can be specified for these types of images:

	Color images : Images that have more than one color component

	Grayscale images : Images that have only one color component and more than one bit per sample

	Monochrome images : Images that have only one color component and only one bit per sample

The names of the settings indicate which type of image they apply to (for example, ColorImageFilter , GrayImageFilter , and MonoImageFilter).

The image settings are described in detail in Image settings.

Image compression settings¶

The compression settings fall into several categories. This section describes the overall logic of image compression. There are several options for compression, including JPEG, JPEG2000, CCITTFax, RunLength, Flate, as well as automatic compression. See the following sections for details on each compression type.

The following Boolean settings determine whether compression takes place on the specified image type. If the value is false , no compression takes place, and the other compression settings for that image type are ignored:

	EncodeColorImages

	EncodeGrayImages

	EncodeMonoImages

Note

In this document, the term encode is used to refer to compression. Strictly speaking, encoding in PDF does not always involve compression.

These settings are Boolean values that determine whether automatic compression , in which the producer application chooses compression settings based on the image contents, is applied:

	AutoFilterColorImages

	AutoFilterGrayImages

See Automatic compression for details. (Automatic compression is not used for monochrome images.)

When automatic compression is chosen, these settings provide further information:

	ColorImageAutoFilterStrategy

	GrayImageAutoFilterStrategy

	ColorACSImageDict

	GrayACSImageDict

	JPEG2000ColorACSImageDict

	JPEG2000GrayACSImageDict

When automatic compression is not chosen, these settings determine the type of compression (JPEG, Flate, etc.) to be used for the specified image type:

	ColorImageFilter

	GrayImageFilter

	MonoImageFilter

These settings provide further information during non-automatic compression:

	ColorImageDict

	GrayImageDict

	JPEG2000ColorImageDict

	JPEG2000GrayImageDict

Images can be compressed using any one of several compression filters. See Section 3.13 of the PostScript Language Reference and Section 3.3 of the PDF Reference for information on the compression filters.

Note

Because the values of settings can be modified in a PostScript file (see Modifying settings during the job), it is possible when using Distiller to explicitly apply different image settings to specific images. This capability does not apply to Creative Suite applications.

The following sections summarize the types of compression and how Adobe PDF settings can be used to control them.

Flate¶

Flate (also called Zip) is a compression method that works well on images with large areas of single colors or repeating patterns, such as screen shots and simple images created with paint programs, and for black-and-white images that contain repeating patterns. The Flate method is lossless , which means it does not remove data to reduce file size and so does not affect an image’s quality.

Adobe’s implementation of the Flate filter is derived from the zlib package of Jean-Loup Gailly and Mark Adler.

JPEG¶

The JPEG compression method is suitable for grayscale or color images, such as continuous-tone photographs that contain more detail than can be reproduced on screen or in print. JPEG is a lossy compression method that can achieve much smaller file sizes than Flate compression, which is lossless. JPEG attempts to reduce file size with the minimum loss of information.

JPEG encoding and decoding is done by means of the direct cosine transformation (DCT) algorithm. This algorithm can take several optional parameters. In PostScript files, these parameters are contained in the DCTEncode parameter dictionary that is used by the DCTEncode filter. See “DCTEncode Filter” in Section 3.13.3 of the PostScript Language Reference for detailed information.

Four PDF settings are dictionaries that specify parameters to control JPEG compression. They are ColorACSImageDict and GrayACSImageDict (for automatic compression) and ColorImageDict and GrayImageDict (for non-automatic compression). These dictionaries are based on the DCTEncode parameter dictionary.

The default value for each of these dictionaries is

<</Qfactor 0.76 /Hsamples [2 1 1 2] /Vsamples [2 1 1 2]>>

The following should be noted about these dictionaries:

	The QFactor entry is the only one that can be set directly. It provides a measure of the trade-off between image compression and image quality. Lower values of QFactor mean higher quality and therefore less compression.

	HSamples and VSamples can be set in the PDF settings file. However, Distiller and other applications ignore these values and provide their own values based on QFactor. If QFactor >= 0.5, both the HSamples and VSamples arrays are set to [2 1 1 2]. If QFactor < 0.5, then both the HSamples and VSamples arrays are set to [1 1 1 1]. If you save the settings to a file, the computed values for HSamples and VSamples are saved in the file, regardless of the original values present in the file.

	The other entries that can appear in a DCTEncode parameter dictionary are not settable through these image dictionaries. They include Columns , Rows , Colors , QuantTables , HuffTables , ColorTransform , and CloseTarget. These parameters are set internally in Distiller (or other application) depending on the properties of each image. ColorTransform is set to the “best” value for each image. It is set to 0 if the color space is Lab or Gray or (CMYK AND QFactor >= 0.5). Otherwise, ColorTransform is set to 1.

In the user interface of Distiller and the Creative Suite applications, you can use the Quality field to achieve one of five levels of image quality. The following table shows the values of HSamples , VSamples , and QFactor that correspond to Minimum, Low, Medium, High, and Maximum image quality.

Image compression quality

	Quality
	HSamples
	VSamples
	QFactor

	Minimum
	[2 1 1 2]
	[2 1 1 2]
	2.40

	Low
	[2 1 1 2]
	[2 1 1 2]
	1.30

	Medium
	[2 1 1 2]
	[2 1 1 2]
	0.76

	High
	[1 1 1 1]
	[1 1 1 1]
	0.40

	Maximum
	[1 1 1 1]
	[1 1 1 1]
	0.15

Note

When Distiller processes PostScript files to produce PDF, it normally decompresses all JPEG images and then recompresses them according to the settings in effect. The exception is when the PassThroughJPEGImages setting is true. Illustrator and InDesign do not use this setting but normally behave as if it were true with regard to placed PDF files containing compressed images. That is, they do not uncompress and recompress them unless color conversion or downsampling takes place. See the reference entry for PassThroughJPEGImages for more information.

JPEG2000¶

JPEG2000 is a new international standard for the compression and packaging of image data. It defines a wavelet-based method for image compression that gives somewhat better size reduction than other methods such as JPEG or CCITT. It is suitable both for images that have a single color component and for those with multiple color components. JPEG2000 is especially well suited for color images with smooth variation in color values.

There is no filter name defined for JPEG2000 compression in the PostScript language definition). PDF files use the JPXDecode filter to decompress JPEG2000 images. See the PDF Reference for information about JPEG2000 compression in PDF files. See also http://www.jpeg.org/JPEG2000.htm .

The JPEG2000 compression filter provides the ability to encode different versions of an image with varying resolution. For example, a thumbnail version of the image may be encoded in the data, followed by a sequence of other versions of the image, each with approximately four times as many samples (twice the width, twice the height) as the previous one. The last version is the highest resolution image, corresponding to the value of the Quality key (see the following table). A PDF viewer may not need to decode the highest resolution version but only the resolution that best matches the current viewing or printing needs. Therefore, fewer bytes need to be processed, a particular benefit when viewing files over the Web. JPEG2000 data also has a built-in tiling structure, such that if the full image is not visible, only those tiles being displayed need to be decoded (to an appropriate resolution).

There are four PDF settings that specify dictionaries for customizing color or grayscale image compression for the JPEG2000 filter:

	JPEG2000ColorImageDict and JPEG2000GrayImageDict are used with regular (non-automatic) compression.

	JPEG2000ColorACSImageDict and JPEG2000GrayACSImageDict are used with automatic compression.

These dictionaries have three entries you can set, as shown in the following table. Since all entries are optional, an empty dictionary is acceptable.

Entries in JPEG2000 image dictionaries

	Key
	Type
	Value

	TileWidth
	integer
	(Optional) The width of JPEG2000 image tiles in samples. Valid values are 128 - 2048; values outside this range generate a range error.

Default value: 256.

	TileHeight
	integer
	(Optional) The height of JPEG2000 image tiles in samples. Valid values are 128 - 2048; values outside this range generate a range error.

Default value: 256.

	Quality
	integer
	(Optional) The required image quality for the highest resolution image in the image progression. Valid values are 1 - 100, where 1 is the lowest quality (highest compression), 99 means visually lossless compression, and 100 means numerically lossless compression.

Default value: 15 (Medium).

In the Compression panel of the Distiller UI, the mapping that occurs for the predefined options is as follows:

	Minimum = 5

	Low = 10

	Medium = 15

	High = 20

	Maximum = 30

	Lossless = 100

The user interface provides a Tile Size option if CompatibilityLevel is set to 1.5 or higher and the Compression setting is JPEG2000 or Automatic (JPEG2000). The amount specified sets both the TileWidth and TileHeight parameters to the same value. If a settings file has been modified so that the values are different, Distiller accepts both values, but Creative Suite applications use the value of TileWidth for both.

Automatic compression¶

Automatic compression for color or grayscale bitmap images means that the application producing the PDF determines the compression filters to be applied to individual images. Setting AutoFilterColorImages and/or AutoFilterGrayImages to true causes automatic compression to take place for color and grayscale images, respectively.

You can use the ColorImageAutoFilterStrategy and GrayImageAutoFilterStrategy settings to choose between two automatic compression strategies. The value of these settings can be either JPEG (the default) or JPEG2000 (which applies only to PDF 1.5 and later files). If you choose JPEG :

	JPEG compression (the DCTEncode filter) is used for 8-bit images that have smooth color changes (low-frequency images). The parameters specified in the ColorACSImageDict or GrayACSImageDict dictionary are used to provide further control. JPEG typically provides greater compression than Flate, but is lossy (can lose information).

	Flate compression is used for all other images. Flate is a lossless compression method, so it is more suitable for images with sharp color changes (high-frequency images). Flate does not take any additional parameters.

Warning

Flate compression is also used when the image uses a DeviceN color space, is small (< 1024 bytes), extremely wide (> 40000 pixels) or is ChromaKeyed.

If you choose JPEG2000 :

	Lossy JPEG2000 compression is used for low-frequency images. The compression parameters specified in the JPEG2000ColorACSImageDict or JPEG2000GrayACSImageDict dictionary provide further control of the compression. See JPEG2000 for information about these dictionaries.

	Lossless JPEG2000 compression is used for high-frequency images. The compression JPEG2000ColorACSImageDict or JPEG2000GrayACSImageDict dictionaries are used as well, with the modification that the Quality parameter is forced to 100 (to achieve lossless compression).

Non-automatic compression¶

This section describes the compression options that are available when automatic compression is not chosen. (Automatic compression does not apply to monochrome images.)

Color and grayscale images¶

Grayscale images have one color component and more than one 1 bit per component. Color images have more than one color component and 1 or more bits per component:

	For grayscale images that have 2 or 4 bits per component or color images with 1, 2, or 4 bits per component, only Flate compression is permitted

	For grayscale or color images with 8 bits per component, JPEG, JPEG2000, and Flate are permitted

Warning

For grayscale or color images with more than 8 bits per component, the least significant bits of each image sample are removed, yielding 8 bits per sample.

When image compression is selected (with EncodeColorImages , EncodeGrayImages , or EncodeMonoImages), the ColorImageFilter , GrayImageFilter , or MonoImageFilter settings specify which compression filter should be used. If no filter name is specified (is absent), lossless Flate is used in all cases. Invalid filter names generate an error.

Note

The following filters are never selected, even if they are specified in the Adobe PDF settings file: LZWEncode , ASCII85Encode , and ASCIIHexEncode.

Under the following conditions, FlateEncode is used even if another filter is specified:

	The selected filter is CCITTFaxEncode and the image is wide (more than 40,000 columns).

	The selected filter is JPXEncode and the image is indexed or ChromaKeyed or CompatibilityLevel is less than 1.5.

	The selected filter is DCTEncode and the image is wide (more than 40,000 columns), indexed, deviceN or ChromaKeyed.

	The selected filter is not supported for the number of colors or sample depth of the particular image being compressed.

Monochrome (black and white) images¶

Monochrome images are defined as images with only one color component and one bit per sample. For monochrome image compression, the available filters are CCITTFaxEncode , RunLengthEncode , and FlateEncode.

The CCITTFaxEncode parameter dictionary specifies options for CCITT compression. See “CCITTFaxEncode Filter” in Section 3.13.3 of the PostScript Language Reference for details. The MonoImageDict setting is a dictionary that contains the same keys as the CCITTFaxEncode parameter dictionary; any of the keys can be customized.

CCITTFaxEncode (CCITT Group 4) compression typically yields the best compression of monochrome images. It is specified by a value of -1 for the K key in the CCITTFaxEncode parameter dictionary, for two-dimensional encoding. A value of 0 for this key corresponds to CCITT Group 3 (one-dimensional encoding).

Note

With the exceptions of the AntiAliasMonoImages and MonoImageDepth parameters, the monochrome image compression parameters also can be applied to stencil masks created by the imagemask operator. Parameter behavior is the same in both cases. For details on imagemask , see the PostScript Language Reference .

Downsampling and subsampling images¶

Downsampling and subsampling are processes that reduce the number of pixels per inch in an image. To do so, pixels in a sample area are combined to make one larger pixel.

The following subsampling and downsampling methods are available:

Subsampling : A pixel in the center of the sample area replaces the entire area at the specified resolution. Subsampling is significantly faster than downsampling but results in images that are less smooth and continuous.

Average downsampling : The pixels in a sample area are averaged, and the average pixel color replaces the entire area at the specified resolution.

Bicubic downsampling : A weighted average is used to determine pixel color and usually yields better results than the simple averaging method of downsampling. This is the slowest but most precise method, resulting in the smoothest tonal gradations.

You should downsample or subsample bitmap images when they are sampled at a higher resolution than the output device supports. The excess data increases the time it takes the device to process the image without improving image quality. For example, by reducing an image from a typical printer resolution of 300 pixels per inch to a typical monitor resolution of 72 pixels per inch, the amount of data needed to represent an image is decreased by a factor of 16, and the image can be drawn on the screen much more quickly.

Downsampling settings¶

These settings are Boolean values that specify whether images of the specified type should be downsampled: DownsampleColorImages , DownsampleGrayImages , and DownsampleMonoImages.

These settings specify the resolution to which images should be downsampled: ColorImageResolution , GrayImageResolution , or MonoImageResolution.

These settings specify the type of sampling (average or bicubic downsampling, subsampling, or none) ColorImageDownsampleType , GrayImageDownsampleType , or MonoImageDownsampleType.

In order for downsampling to actually occur, the ratio of the input image resolution to the desired output resolution (specified by the above parameters) must exceed the downsampling threshold. These settings are used to set the downsampling threshold resolution: ColorImageDownsampleThreshold , GrayImageDownsampleThreshold , and MonoImageDownsampleThreshold.

For example, if ColorImageResolution is 72 and ColorImageDownsampleThreshold is set to 1.5, an image is not downsampled unless its input resolution is greater than 108 pixels per inch:

trunc((72 * 1.5) + .5) = 108 pixels per inch

Threshold values must be between 1.0 through 10.0, inclusive, with a default value of 1.5. (If you set the threshold out of range, it reverts to 1.5.)

Controlling the range of bit depths for which downsampling occurs¶

You can also control the range of bit depths for which downsampling occurs. For example, in a workflow where there is a mixture of 1-bit and 8-bit data, you can downsample the 8-bit data while not touching the 1-bit data. This is done with the following settings:

	ColorImageMinDownsampleDepth can be 1, 2, 4, or 8

	GrayImageMinDownsampleDepth can be 2, 4, or 8

For example, a value of 4 for ColorImageMinDownsampleDepth means that only 4- and 8 bits-per-sample color images are downsampled (assuming DownsampleColorImages is true). Similarly, a value of 8 for GrayImageMinDownsampleDepth means that only 8 bits-per-sample gray images are downsampled (assuming DownsampleGrayImages is true).

Note

12 bits-per-sample images (valid in PostScript) are treated exactly as 8 bits-per-sample images because they are converted to 8 bits per sample before downsampling takes place.

Setting compression of text, line art, and objects¶

You can use the CompressPages setting to set the compression of text and line art. For PDF 1.5 and above, you can use the CompressObjects setting to control object-level compression, which is the consolidation of small objects that cannot be individually compressed into streams that can then be efficiently compressed.

Distiller-only image settings¶

The following options apply only to Distiller and are not supported by Creative Suite applications.

Controlling bit depth¶

Bit depth is the number of bits used to represent each color component of each sample of an image. (For example, red, green, and blue are the color components in an RGB image). Distiller supports the control of bit depth by means of the ColorImageDepth , GrayImageDepth , and MonoImageDepth settings.

The bit depth of an image can be decreased (for example, from 8 bits per sample to 4 bits per sample) to save space, regardless of whether the image is downsampled.

If an image is downsampled, the bit depth can be increased to provide anti-aliasing . Anti-aliasing increases the number of bits per sample to preserve some of the information that is otherwise lost by downsampling. Anti-aliasing occurs only in the following conditions:

	The image depth setting specifies a bit depth greater than that of the incoming image.

	The value of the appropriate setting AntiAliasColorImages , AntiAliasGrayImages , or AntiAliasMonoImages is true. (They need not be true to decrease the bit depth.)

	Sampling is enabled and the downsample thresholds are met; therefore, sampling actually occurs.

In these cases, Distiller first increases the bit depth, then downsamples the image.

For example, suppose a 300 pixel-per-inch monochrome image is downsampled to 150 pixels per inch. If MonoImageDepth is 4 and AntiAliasMonoImages is true , the bit depth of the image is increased prior to downsampling so that it becomes a 4-bit grayscale image. Each of the samples in the downsampled image is produced from four samples in the input image; because each of the input samples can be either on or off, there are 16 possible values for each sample in the downsampled image.

Note that after the bit depth settings have been applied, an input grayscale or monochrome image may be changed to the other type.

	A grayscale image specified to have a GrayImageDepth of 1 is treated as a monochrome image.

	A monochrome image that has a MonoImageDepth of 2, 4, or 8 becomes a grayscale image.

Distiller determines whether to apply compression settings after downsampling has taken place. If the bit depth has changed, the resulting image type determines which encoding setting is examined. For example, if a monochrome image was changed to have a bit depth of 2 or more, the EncodeGrayImages setting would be checked. If encoding is enabled, the image is compressed using the filter type and filter parameter dictionary specified by the settings for the resulting image type.

The PostScript example below shows a code fragment specifying that monochrome images be downsampled to 72 pixels per inch, converted to 2 bits per sample, and encoded using Flate compression. Because the downsampled images are grayscale, the filter is specified using the grayscale rather than the monochrome image settings. Also, assuming that the input image is a 300-pixels-per-inch image, it is downsampled to 75 pixels per inch, the closest possible value to the 72 pixels per inch requested.

<< /DownsampleMonoImages true
 /MonoImageResolution 72
 /MonoImageDepth 2
 /EncodeGrayImages true
 /AntiAliasMonoImages true
 /GrayImageFilter /FlateEncode
>> setdistillerparams

Specifying a minimum resolution of sampled images¶

In addition to the downsampling settings, starting with version 7.0, Distiller provides settings to check whether images meet a minimum resolution.

ColorImageMinResolution , GrayImageMinResolution , and MonoImageMinResolution are settings that specify an integer between 9 to 64000 representing the minimum resolution for an image.

ColorImageMinResolutionPolicy , GrayImageMinResolutionPolicy , and MonoImageMinResolutionPolicy are settings that specify what happens when images are found that do not meet the minimum resolution. They are names that can take one of the following values:

	OK : the minimum resolution settings are ignored.

	Warning : Any image with a resolution smaller than the specified minimum generates a warning when the PDF file is created.

	Error : Any image with a resolution smaller than the specified minimum generates an error, and the job fails with a limit check error.

The default values for these settings in the predefined Adobe PDF settings files are chosen to be the same as the values for the default downsampling resolution. With these default values, Distiller’s default behavior does not change; that is, Distiller does not enforce any lower limit on image resolution.

These settings can be used to ensure that a PDF file does not have any images with lower resolution than the defined limit. This feature is primarily for prepress people who want to detect that no low resolution images make it into a PDF file. An example is a sampled image in an advertisement where the image must be of a certain quality.

If you get a warning or error about a low resolution image and the settings are correct according to your requirements, you need to go to the source of the image and regenerate it with a higher resolution. Distiller cannot actively alter these images because it doesn’t support up-sampling.

In the following example, Distiller issues a warning every time a sampled gray image with resolution smaller than 100 ppi is placed in the PDF file:

/GrayImageMinResolution 100
/GrayImageMinResolutionPolicy /Warning

The warning messages will look like this:

%%[Warning: Gray image resolution (92 ppi) is

 lower than /GrayImageMinResolution (100 ppi)]%%

If GrayImageMinResolutionPolicy is set to Error , then an error message is emitted and the job fails with a limitcheck error. If GrayImageMinResolutionPolicy is set to OK , then distillation continues normally.

Note

While there are no dependencies or interaction between the downsampling settings and the minimum resolution settings, normally you would not set the resolution policy to Warning or Error and at the same time set the minimum resolution to a value that is higher than the downsampling threshold. If you do this, the result is that all images are flagged as having too low a resolution. If the resolution policy is Error , then only PDF files with no images would be distilled.

Controlling downsampling and encoding for each sampled image¶

You can separately control the downsampling and encoding of each sampled image in a PostScript file. To do this, you must make adjustments to the Distiller parameters in the file just before, and appropriate to, each image.

Disabling of image cropping¶

Distiller determines whether more than 10 percent of an image sample falls outside the existing clip path. If so, Distiller normally discards (crops) the image samples that fall outside the clip area, resulting in smaller images and PDF files.

For workflows in which the full-size (non-cropped) images must be extracted for special-purpose image manipulation, it is possible to disable cropping, using the settings CropColorImages , CropGrayImages , and CropMonoImages for color, grayscale, and monochrome images, respectively. These settings are Boolean values:

	false : indicates that Distiller should not clip image samples regardless of the current clip area.

	true : (the default) indicates that Distiller should crop only if the 10 percent criteria is met.

Note

InDesign uses a separate setting, CropImagesToFrames , to control cropping.

Using the font settings¶

Fonts can be included (embedded) in a PDF file to ensure that the file can be rendered correctly, regardless of whether the fonts are installed on the machine used to view the file. For example, the exact font may be needed to achieve certain effects such as high-end printing or to ensure portability in situations where the viewer cannot create a substitute font.

Distiller supports the EmbedAllFonts setting, which specifies whether fonts should be embedded. Other Creative Suite applications always embed fonts when possible.

Note

Embedding is subject to license; specific fonts can indicate that embedding is not permitted.

See Font settings for a description of each of the font settings.

Embedded fonts make a PDF file larger. To produce files as small as possible, fonts can be subsetted . When you subset a font, only the information required to draw glyphs (specific renderings) for the characters used in the document is embedded. Subsetting is expressed as a percentage of the font glyphs for a font format. The SubsetFonts and MaxSubsetPct settings are used to control partial embedding of fonts.

Distiller supports additional settings to control which fonts are embedded. The rest of this section describes how Distiller chooses whether to embed fonts.

Distiller maintains lists of fonts that will be embedded or not embedded. AlwaysEmbed specifies fonts that should always be embedded, and NeverEmbed specifies fonts that should never be embedded. These two settings are arrays that contain a list of font names. Optionally, the first element in the arrays may be a Boolean value (true or false).

	If the first element is not a Boolean value, the array of font names represents the entire list of fonts to be embedded or not embedded.

	If the first element is the Boolean true , the font names in the array are added to Distiller’s internal list of fonts to be embedded (AlwaysEmbed) or not embedded (NeverEmbed).

	If the first element is the Boolean false , the font names in the array are removed from Distiller’s internal list of fonts to be embedded (AlwaysEmbed) or not embedded (NeverEmbed).

If a font appears in both the NeverEmbed and AlwaysEmbed lists, it is never embedded.

The EmbedAllFonts setting is a Boolean value that, when true , specifies that all fonts be embedded except those in the NeverEmbed array.

Note

A font may not be embedded if its license doesn’t permit embedding, even though its name is in the AlwaysEmbed list or EmbedAllFonts is true. Furthermore, a symbolic font is always embedded (if license permits) even if its name is in the NeverEmbed list.

In this PostScript example, Minion Regular is always embedded, and ITC Stone Serif Italic and ITC Stone Sans are never embedded.

<< /AlwaysEmbed [/Minion-Regular]

 /NeverEmbed [/StoneSans /StoneSerif-Italic]

 >> setdistillerparams

Note

The font name given to definefont does not have to match the name in the FontInfo dictionary. For instance, in this example the full name of the font defined as ‘StoneSans’ is ‘ITC Stone Sans.’

The following table identifies the types of fonts that you can (or cannot) embed or subset through Distiller settings.

Distiller control over embedding and subsetting fonts

	Font
	NeverEmbed?
	AlwaysEmbed?
	Subset?

	Type 1
	Yes
	Yes
	Yes

	Type 3
	No - Always embedded
		No - Always subsetted

	True Type (Type 42)
	Yes
	Yes
	No - Always subsetted

	CIDFontType0
	Yes
	Yes
	No - Always subsetted

	CIDFontType1
	No - Always embedded
		No - Always subsetted

	CIDFontType2
	Yes
	Yes
	No - Always subsetted

	OpenType
	Yes
	Yes
	Yes

For additional information on Type 1, Type 3, Type 42, and CID-keyed fonts, see Chapter 5, “Fonts,” in the PostScript Language Reference and Chapter 5 in the PDF Reference.

Note

Distiller 5 and above also support OpenType fonts; Distiller 4 does not. OpenType fonts are based on the Compact Font Format Specification.

Using the color conversion settings¶

This section describes how the color conversion settings are used and explains the correspondence between different groups of settings.

Acrobat Distiller uses a number of settings to control color conversion. As with all Distiller parameters, these settings are defined in the Common namespace (see Common PDF Settings” for details).

Creative Suite applications have a sophisticated user interface for determining color conversions when producing PDF files. The options provided in the UI correspond to settings in the CreativeSuite namespace of the settings files (see Other Namespaces” for details). These options provide a superset of the functionality provided by the Distiller settings in the Common namespace. To maximize interoperability, Creative Suite applications store approximations to their color settings in the Common settings when saving settings files.

Distiller color conversion settings¶

Distiller uses a number of settings related to color. The following settings are only used by Distiller: DefaultRenderingIntent , ParseICCProfilesInComments , PreserveDICMYKValues , PreserveHalftoneInfo , TransferFunctionInfo , and UCRandBGInfo. They control such features as whether Distiller preserves (that is, passes into the PDF file) halftoning, overprinting, and transfer function information. See Common PDF Settings for information on these settings.

Other color conversion settings are shared to a limited degree with Creative Suite applications. They are:

	ColorSettingsFile : A file containing color settings. When a color settings file is specified, all other color conversion settings are ignored and not selectable in the UI. The Creative Suite applications recognize the existence of this setting as an indication that the user has modified color settings outside the suite.

	CalCMYKProfile , CalGrayProfile , CalRGBProfile : Settings that specify the names of ICC profiles to be used for tagging or converting CMYK, gray, or RGB color data, respectively.

	sRGBProfile : The name of an ICC profile to use for converting color spaces to CalRGB (PDF 1.2) or sRGB (PDF 1.3 and above).

Warning

The Creative Suite applications do not support saving files as PDF 1.2.

ColorConversionStrategy : Specifies a strategy for determining output color family and color space and the inclusion of ICC profiles. (See “ICCBased Color Spaces” in Section 4.5.4 of the PDF Reference for details on profiles.) The ColorConversionStrategy setting has the following possible values.

	Value
	UI equivalent

	LeaveColorUnchanged
	Leave Color Unchanged

	UseDeviceIndependentColor
	
Tag Everything for Color Management

(no conversion)

	UseDeviceIndependentColor-ForImages
	
Tag Only Images for Color Management

(no conversion)

	sRGB
	Convert All Colors to sRGB

	CMYK
	Convert All Colors to CMYK

Note

Distiller leaves Separation and DeviceN color spaces unchanged in PDF output. Creative Suite applications convert the alternate color spaces; for example, when converting to CMYK, the alternate color space is changed to CMYK if necessary and the tint transform is adjusted accordingly.

The following table shows how Distiller converts the PostScript input to the equivalent color space for each ColorConversionStrategy value. The notes below the table provide further information.

PS color space (in) vs. PDF color space (out)

	PS Input
	
LeaveColor

Unchanged

	
UseDevice

Independent

Color

	
UseDevice

Independent

ColorForImages

	sRGB
	CMYK

	Gray text and graphics
	DeviceGray
	ICCBased
	DeviceGray
	DeviceGray
	DeviceGray

	Gray image
	DeviceGray
	ICCBased
	ICCBased
	DeviceGray
	DeviceGray

	RGB text and graphics
	DeviceRGB
	ICCBased
	DeviceRGB
	sRGB
	DeviceCMYK

	RGB image
	DeviceRGB
	ICCBased
	ICCBased
	sRGB
	DeviceCMYK

	CMYK text and graphics
	DeviceCMYK
	ICCBased
	DeviceCMYK
	sRGB
	DeviceCMYK

	CMYK image
	DeviceCMYK
	ICCBased
	ICCBased
	sRGB
	DeviceCMYK

	CIE text and graphics
	ICCBased
	ICCBased
	ICCBased
	sRGB
	DeviceGray/ DeviceCMYK (1)

	CIE image
	ICCBased
	ICCBased
	ICCBased
	sRGB
	DeviceGray/ DeviceCMYK (1)

Note

	CIEBasedA becomes DeviceGray; others become DeviceCMYK.

Notes on the PS color space (in) vs. PDF color space (out) table:

	ICCBased color spaces were introduced in PDF 1.3. When creating PDF 1.2 files using device-independent colors, the color spaces CalGray (for gray), CalRGB (for RGB), or Lab (for CMYK) are used in place of ICCBased.

	sRGB is an industry standard color space, but PDF does not have a color space by this name. Instead, it can be represented precisely in PDF as an ICCBased color space or approximated by a CalRGB color space. During conversion, Distiller chooses either CalRGB or ICCBased as appropriate. (For PDF 1.2, it must choose CalRGB.)

Creative Suite color conversion settings¶

Creative Suite applications use several color conversion settings. The settings, which are in the CreativeSuite namespace, determine whether colors should be converted and which profiles should be included for which objects. They appear in the Output panel of the PDF export dialog box in the user interface. This section explains how the settings are used.

Converting colors¶

The ConvertColors setting determines whether colors should be converted. A value of NoConversion corresponds to “No Color Conversion” in the UI. Values of ConvertToCMYK and ConvertToRGB can correspond to either of the following UI settings, as follows:

	Convert to Destination: All colors are converted to destination profile space unless profiles are same as destination profile. (Native and untagged placed objects are treated as if tagged with the corresponding document profile.)

	Convert to Destination (Preserve Numbers): (This option is not used by Photoshop.) Colors are converted to the destination profile if the color space family (for example, CMYK) does not match the destination color space family. Colors are not converted if there is no embedded profile or if the object is native (that is, created in the application itself as opposed to placed graphics such as images or PDF).

Including profiles¶

This section describes the settings that control whether and which color profiles should be included.

IncludeProfiles is a Boolean value. If it is false , no profiles are included in the generated PDF. The UI setting is “Don’t Include Profiles”. If IncludeProfiles is true and colors are being converted to a destination, the UI specifies “Include Destination Profiles.”

If IncludeProfiles is true and colors are not being converted, the options are:

	Include All Profiles : Includes profiles for all content.

	Include Tagged Source Profiles : Leaves device-dependent colors unchanged and preserves device-independent colors as the nearest possible equivalent in PDF.

	Include All RGB and Tagged Source CMYK Profiles : Includes profiles for tagged RGB and tagged CMYK objects, as well as the Document RGB profile for untagged RGB objects.

These correspond to additional settings, explained below.

Note

In the Photoshop UI, only “Include Destination Profile” is available when converting colors.

UntaggedRGBHandling and UntaggedCMYKHandling determine what should happen to untagged RGB or CMYK objects during conversion. They can either be left untagged (LeaveUntagged) or tagged with the document profile (UseDocumentProfile).

The choice of profiles is controlled by DestinationProfileSelector , which can take these values:

	NA means that no color conversion takes place (ConvertColors is NoConversion).

	WorkingCMYK , WorkingRGB , DocumentCMYK , and DocumentRGB specify the profile to be used for color conversion. When using WorkingCMYK or DocumentCMYK , Creative Suite applications also write the profile name to DestinationProfileName.

	UseName means that the ICC profile specified by DestinationProfileName should be used for color conversion.

Color settings interchange¶

This section describes how Creative Suite applications decide whether to use the CreativeSuite namespace settings or the Common settings and what values they store when saving settings files.

When common settings are used¶

Creative Suite applications use the Common settings when the CreativeSuite settings are not present in the settings file or when there is an inconsistency between the two types of settings. This section describes when the Common settings are used.

The following settings indicate that the settings file was not created by a Creative Suite application:

	A value for ColorSettingsFile other than the empty string or (None). In this case, the other Common settings are used.

	A value of UseDeviceIndependentColorForImages for ColorConversionStrategy. In this case, Creative Suite applications override this value and use LeaveColorsUnchanged.

In other cases, the Common settings and CreativeSuite settings are present but inconsistent, indicating that the settings file must have been modified subsequent to being written by a Creative Suite application. In these cases, ColorSettingsFile is empty or unspecified and the following values are present:

	The value of ColorConversionStrategy is UseDeviceIndependentColorForImages. In this case, Creative Suite applications override this value and use LeaveColorsUnchanged.

	The value of ColorConversionStrategy is CMYK and the value of ConvertColors (Creative Suite) is ConvertToRGB or NoConversion.

	The value of ColorConversionStrategy is sRGB and the value of ConvertColors is ConvertToCMYK or NoConversion.

	The value of ColorConversionStrategy is LeaveColorsUnchanged and the value of ConvertColors is ConvertToCMYK or ConvertToRGB.

	The value of ColorConversionStrategy is LeaveColorsUnchanged , the value of ConvertColors is NoConversion , IncludeProfiles is true , and UntaggedCMYKHandling is UseDocumentProfile.

	The value of ColorConversionStrategy is UseDeviceIndependentColor and the value of ConvertColors is ConvertToCMYK or ConvertToRGB.

	The value of ColorConversionStrategy is UseDeviceIndependentColor , the value of ConvertColors is NoConversion , and IncludeProfiles is false.

	CalCMYKProfile has a non-empty value, DestinationProfileName has a non-empty value that does not match CalCMYKProfile , and the value of ConvertColors is ConvertToCMYK.

In all other cases, the CreativeSuite settings are used.

When the Common settings are used, the following table shows how the Common setting ColorConversionStrategy determines the values of the Creative Suite UI elements. (See the table Conversion from CreativeSuite settings to Common settings for additional information.) Note that in all cases, if color management is off, the Profile Inclusion Policy defaults to “Don’t Include Profiles.”

Creative Suite equivalents for ColorConversionStrategy

	ColorConversionStrategy
	UI elements

	LeaveColorsUnchanged
	Color Conversion = No Conversion

Profile Inclusion Policy = Include Tagged Source Profiles

	UseDeviceIndependentColor
	Color Conversion = No Conversion

Profile Inclusion Policy = Include All Profiles

	UseDeviceIndependentColorForImages
	Color Conversion = No Conversion

Profile Inclusion Policy = Include Tagged Source Profiles

	sRGB
	Color Conversion = Convert to Destination

Profile Inclusion Policy = Include All Profiles

Destination Profile = sRGBProfile

	CMYK
	Color Conversion = Convert to Destination (Preserve Numbers)

Profile Inclusion Policy = Don’t Include Profiles

Destination Profile = CalCMYKProfile

Note

When specifying PDF/X-1a compliance (that is, the value of CheckCompliance is either [PDFX1a:2001] or [PDFX1a:2003]), Creative Suite applications always use CMYK as the value of ColorConversionStrategy. See Using the standards settings for more information.

Saving common settings equivalents¶

When saving settings files, the Creative Suite applications write the best possible approximations of their color settings to the Common settings. ColorSettingsFile is always set to (). This section describes how the other settings are determined.

The following table shows the relationship between the Creative Suite UI, the Creative Suite settings and the Common settings. The first four columns show the possible values of ConvertColors , IncludeProfiles , UntaggedCMYKHandling , and UntaggedRGBHandling. The last column shows the Common settings that correspond to them. The first column also shows what UI names correspond to the groups of settings.

Conversion from CreativeSuite settings to Common settings

	
ConvertColors

/UI Name

	
Include

Profiles

	
UntaggedCMYK

Handling

	
UntaggedRGB

Handling

	Common settings

	
NoConversion

Don’t Include Profiles

	false
	LeaveUntagged
	LeaveUntagged
	ColorConversionStrategy

= LeaveColorsUnchanged

	Include Tagged Source Profiles
		true
	LeaveUntagged
	LeaveUntagged

	Include All RGB & Tagged Source CMYK Profiles
		true
	LeaveUntagged
	UseDocumentProfile

	Include All Profiles
	true
	UseDocumentProfile
	UseDocumentProfile
	ColorConversionStrategy

= UseDeviceIndependent

Color
CalCMYKProfile = Document CMYK
CalRGBProfile = Document RGB

	
ConvertToCMYK

Convert To Destination

	false
	UseDocumentProfile
	UseDocumentProfile
	
ColorConversionStrategy = CMYK

CalCMYKProfile = destination CMYK profile name

CalRGBProfile = document RGB profile name

		true
			UseDocumentProfile

	Convert To Destination

(Preserve Numbers)

			false
	LeaveUntagged

				true
	LeaveUntagged

	
ConvertToRGB

Convert To Destination

	false
	UseDocumentProfile
	UseDocumentProfile
	
ColorConversionStrategy = RGB

CalCMYKProfile = document CMYK profile name

CalRGBProfile = document RGB profile name

		true
		UseDocumentProfile
	UseDocumentProfile

	
ConvertToRGB

Convert To Destination

(Preserve Numbers)

		false
	UseDocumentProfile
	LeaveUntagged

			true
	UseDocumentProfile
	LeaveUntagged

Using the advanced Adobe PDF settings¶

You can customize advanced Adobe PDF settings. When the CreateJobTicket setting is true , Distiller produces internal job tickets (that is, job tickets within the PDF file). Job ticket keys are created in response to setpagedevice keys and DSC comments.

The relationship between setpagedevice keys and job ticket keys, and the relationship between DSC comments and job ticket keys is described in the following sections. For details on the format and contents of job tickets, see Portable Job Ticket Format, Version 1.1 .

Relationship between setpagedevice keys and job ticket keys¶

The following table lists the setpagedevice keys that Distiller supports and describes where in an internal job ticket Distiller stores the corresponding key values.

Note

setpagedevice keys that are distilled into the JobTicketContents dictionary rather than into the PageRange dictionary must appear in the first page of the PostScript job; otherwise, they are ignored. In the PS page column of the following table, “First” identifies setpagedevice keys that must appear on the first page.

Relationship between setpagedevice keys and job ticket keys

	setpagedevice key
	PS page
	job ticket key

	
Bind

	Bind is unrelated to the Binding setting.

	First
	JobTicketContents::Finishing

	CutMedia
	First
	
If the value of the CutMedia setpagedevice key is less than 4, Distiller represents the setpagedevice value in JobTicketContents::MediaUsage::CutMedia.

Otherwise, it represents the value in JobTicketContents::PrintLayout::Signature::
Sheets::MediaUsage::CutMedia .

	DeviceRenderingInfo/

ValuesPerColorComponent

	Any
	PageRange::Rendering::ValuesPerColor

Component

	Duplex
	First
	
JobTicketContents::PrintLayout

See Appendix B.4 in the Portable Job Ticket Format, Version 1.1 , for a description of the general appearance of a job ticket that can produce duplex printing.

	Fold
	First
	JobTicketContents::Finishing

	HWResolution
	Any
	PageRange::Rendering::Resolution

	Jog
	First
	JobTicketContents::Finishing

	Laminate
	First
	JobTicketContents::Finishing

	ManualFeed
	First
	JobTicketContents::MediaSource::ManualFeed

	MediaClass
	First
	JobTicketContents::MediaSource::MediaClass

	MediaColor
	First
	JobTicketContents::MediaSource::MediaColor

	MediaPosition
	First
	JobTicketContents::MediaSource::Position

	MediaType
	First
	JobTicketContents::Media::Category

	MediaWeight
	First
	JobTicketContents::Media::Weight

	MirrorPrint
	First
	JobTicketContents::MediaUsage::MirrorPrint

	NegativePrint
	First
	JobTicketContents::MediaUsage::NegativePrint

	PageSize
	Any
	PageRange::MediaBox

	PostRenderingEnhance
	Any
	PageRange::Rendering::PostRenderingEnhance

	PreRenderingEnhance
	Any
	PageRange::Rendering::PreRenderingEnhance

	ProcessColorModel
	Any
	PageRange::ColorModel::ProcessColorModel

	SeparationColorNames
	Any
	PageRange::ColorModel::ColorantParams

	SeparationOrder
	Any
	PageRange::ColorModel::ColorantOrder

	Separations
	Any
	PageRange::ColorModel::Separations

	Staple
	First
	JobTicketContents::Finishing

	Trapping
	Any
	PageRange::Trapping::Trapping

	TrappingDetails
	Any
	PageRange::Trapping::TrappingDetails

	Trim
	First
	JobTicketContents::Finishing

	Tumble
	First
	
JobTicketContents::PrintLayout

Such a job ticket is identical to that described for the Duplex setpagedevice key, except the CTM for the Back surface is rotated 180 degrees.

Relationship between PostScript comments and job ticket keys¶

When the ParseDSCComments setting is true , Distiller interprets certain PostScript comments to produce true job ticket PlaneOrder objects. Such PostScript comments include %%Page: (which is more specifically a DSC comment), %%QRKPageBegin: , and %%PlateColor:. Distiller also supports the %%PlateColor: PostScript comment; however, use of that comment is discouraged.

Using the standards settings¶

The Standards settings provide control over PDF/A- and PDF/X-compliant output:

	PDF/A is a proposed ISO standard for the long-term preservation (archival) of electronic documents.

	PDF/X is a focused subset of PDF designed specifically for reliable prepress data interchange. It is an International Standards Organization (ISO) standard (www.iso.org).

See Standards settings for details on the settings that are relevant to standards compliance.

Using the compliance checking settings¶

In Acrobat 6, the PDFX1aCheck and PDFX3Check settings were introduced to check for compliance with PDF/X-1a (2001) and PDF/X-3 (2002), respectively.

The CheckCompliance setting was introduced in Distiller 7 and is supported by Creative Suite applications. It specifies the standard against which the document’s compliance is checked. It is an array of strings, each of which is the name of a standard.

Note

Currently only one string may appear in the array.

In Distiller 7 and the Creative Suite, CheckCompliance , if present, takes precedence over PDFX1aCheck and PDFX3Check :

	/CheckCompliance [/PDFX1a:2001] has the same meaning as /PDFX1aCheck true

	/CheckCompliance [/PDFX3:2002] has the same meaning as /PDFX3Check true

	Other values of CheckCompliance have no corresponding Distiller 6 values.

If a settings file contains CheckCompliance and not PDFX1aCheck or PDFX3Check , the appropriate values of PDFX1aCheck and PDFX3Check are written out when the file is saved to provide backward compatibility with Distiller 6 for testing of PDF/X-1a:2001 and PDF/X-3:2002 standards compliance. That is,

/CheckCompliance [/PDFX1a:2001]

without PDFX1aCheck and PDFX3Check is written out and also generates:

/PDFX1aCheck true
/PDFX3Check false

Similarly:

/CheckCompliance [/PDFX3:2002]

without PDFX1aCheck and PDFX3Check is written out and also generates:

/PDFX1aCheck false
/PDFX3Check true

Any other values for CheckCompliance also generates:

/PDFX1aCheck false
/PDFX3Check false

If PDFX1aCheck and/or PDFX3Check are present, they are preserved when the file is saved.

If CheckCompliance is not present in a file:

	If PDFX1aCheck is present and true , CheckCompliance takes the value [/PDFX1a:2001].

	Otherwise, if PDFX3Check is true , CheckCompliance takes the value [/PDFX3:2002].

	Otherwise, CheckCompliance takes the value [/None].

Using the PDF/X output intent settings¶

In a PDF/X compliant file, the document catalog must contain an OutputIntents entry that specifies a PDF/X output intent dictionary . Several settings are used to specify the entries in this dictionary. The rest of this section explains how they work.

Distiller uses the following settings to create the output intent dictionary: PDFXOutputIntentProfile , PDFXOutputCondition , PDFXOutputConditionIdentifier , and PDFXRegistryName. For compatibility, these settings are also used by Creative Suite applications , along with the Creative Suite-specific PDFXOutputIntentProfileSelector setting.

For Distiller only, these settings are ignored in the case where the output intent dictionary is specified explicitly in the PostScript file (by means of pdfmark operators). The rest of this discussion assumes the PostScript file does not specify this information.

The PDF/X output intent dictionary is described in Section 10.10.4 of the PDF Reference. It specifies the following entries (note that these are PDF names):

	OutputConditionIdentifier : A string identifying the intended printing condition of the document. Typically, it is the reference name of a standard production condition in an industry-standard registry such as the ICC Characterization Data Registry (see RegistryName below). It can be specified by the PDFXOutputConditionIdentifier setting.

	DestOutputProfile : A PDF/X output intent profile , which is a stream representing an ICC profile that defines the transformation from the PDF document’s source colors to the output device colorants. It is not required if OutputConditionIdentifier specifies a standard production condition. However, Creative Suite applications always store the profile.

	OutputCondition : An optional human-readable comment describing the printing condition. It can be specified by the PDFXOutputCondition setting.

	RegistryName : A string identifying the registry that defines the condition defined by OutputConditionIdentifier. It can be specified by the PDFXRegistryName setting.

	Info : A string containing additional information. Distiller and Creative Suite aplications use this entry to store the profile name.

The PDFXOutputIntentProfile setting is used to identify a profile name. It may have one of the following values:

	(None) or the empty string () are supported by Distiller only. This value means that the PostScript document must specify the output intent destination profile for PDF/X validation to succeed.

	(Use Output Condition Identifier) is also supported by Distiller only and overridden by Creative Suite applications (as described in the rest of this section). In this case, Distiller uses the value defined by PDFXOutputConditionIdentifier and a profile is not included in the PDF file.

	The name of the output intent destination profile. This profile is embedded as the value of the DestOutputProfile entry.

Warning

For Distiller only, if the profile corresponding to the name is not present on the system, Distiller stores the profile name in OutputConditionIdentifier.

Creative Suite applications use the PDFXOutputIntentProfileSelector (in the CreativeSuite namespace) to identify the profile, which can be a name specified by PDFXOutputIntentProfile or a reference to the Working CMYK, Working RGB, Document CMYK, or DocumentRGB profile.

As mentioned above, Creative Suite applications do not support the value of (Use Output Condition Identifier) for PDFXOutputIntentProfile. When they encounter it in a settings file, they override it as follows:

	PDFXOutputIntentProfileSelector and DestinationProfileSelector are set to UseName.

	If PDFXOutputConditionIdentifier specifies a known condition (that is, one that maps to a specific set of characterization data at www.color.org (the ICC web site), then PDFXOutputIntentProfile and DestinationProfileName are set to the name of the profile associated with the condition. The following table shows a list of profiles and their corresponding characterization data:

	ICC Profile
	Characterization data

(output condition identifier)

	U.S. Web Coated (SWOP) v2
	CGATS TR 001

	Euroscale Coated v2
	FOGRA1

	Euroscale Uncoated v2
	FOGRA4

	Europe ISO Coated FOGRA27
	FOGRA27

	Japan Color 2001 Coated
	JC200103

	Japan Color 2001 Uncoated
	JC200104

	Japan Color 2002 Newspaper
	JCN2002

	If PDFXOutputConditionIdentifier specifies an unknown condition and DestinationProfileName is a “PRTR” profile and maps to an unknown condition, then PDFXOutputIntentProfile is set to the value of DestinationProfileName.

	If PDFXOutputConditionIdentifier specifies an unknown condition and DestinationProfileName is not a “PRTR” profile or maps to a known condition, then

	If ColorConversionStrategy is CMYK , PDFXOutputIntentProfile and DestinationProfileName are set to (U.S. Web Uncoated V2).

	If ColorConversionStrategy is sRGB , PDFXOutputIntentProfile and DestinationProfileName are set to (ROMM RGB).

Warning

For Creative Suite applications, when color management is on and PDF/X compliance has been specified, the effective profiles specified by DestinationProfileName , CalCMYKProfile and PDFXOutputIntentProfile must be the same.

In addition, when specifying PDF/X-1a compliance (that is, the value of CheckCompliance is either [PDFX1a:2001] or [PDFX1a:2003]), if the value of ColorConversionStrategy is not CMYK , the Creative Suite applications use the following values:

	ColorConversionStrategy = CMYK

	ConvertColors = ConvertToCMYK

	UntaggedCMYKHandling = LeaveUntagged

	UntaggedRGBHandling = UseDocumentProfile

	IncludeProfiles = false

Distiller examples¶

The following examples show how Distiller sets the values in the output intent dictionary.

Setting the output intent dictionary to Euroscale Uncoated v2¶

In this example, the PDFXOutputIntentProfile is set to (Euroscale Uncoated v2) , whose corresponding output condition identifier (FOGRA4) is known by Distiller.

12 0 obj
 <<
 /Type /OutputIntent
 /S /GTS_PDFX
 /OutputConditionIdentifier (FOGRA4)
 /RegistryName (http://www.color.org)
 /Info (Euroscale Uncoated v2)
 /DestOutputProfile 11 0 R
 >>
 endobj
 11 0 obj
 <<
 /N 4
 /Length 388226
 /Filter /FlateDecode
 >>
 stream
 ... ICCProfile data ...
 endstream
 endobj

	Setting the output intent dictionary to U.S. Web Uncoated v2

In this example, PDFXOutputIntentProfile is set to (U.S. Web Uncoated v2) and Distiller does not know the corresponding output condition identifier. In this case, the value of the output condition identifier is set to the profile name.

12 0 obj
 <<
 /Type /OutputIntent
 /S /GTS_PDFX
 /OutputConditionIdentifier (U.S. Web Uncoated v2)
 /Info (U.S. Web Uncoated v2)
 /DestOutputProfile 11 0 R
 >>
 endobj
 11 0 obj
 <<
 /N 4
 /Length 386435
 /Filter /FlateDecode
 >>
 stream
 ... ICCProfile data ...
 endstream
 endobj

 © Copyright 2022, Adobe Inc..

 Last updated on May 02, 2023.

