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Using PDF Creation Settings¶

This chapter provides information on using PDF creation settings that supplements the information in the settings reference chapters, Common PDF Settings and Other Namespaces.


Using the image settings¶

PDF settings files provide several options for the processing of images:

	Images (as well as text and line art) can be compressed , thereby significantly reducing the size of a PDF file with little or no loss of detail and precision, depending on the settings chosen.

	Images can be resampled (downsampled or subsampled), which also allows reduction in image size.

	Distiller provides some options relating to bit depth (number of bits per sample) and cropping of images.



The image settings can be specified for these types of images:

	Color images : Images that have more than one color component

	Grayscale images : Images that have only one color component and more than one bit per sample

	Monochrome images : Images that have only one color component and only one bit per sample



The names of the settings indicate which type of image they apply to (for example, ColorImageFilter , GrayImageFilter , and MonoImageFilter ).

The image settings are described in detail in Image settings.


Image compression settings¶

The compression settings fall into several categories. This section describes the overall logic of image compression. There are several options for compression, including JPEG, JPEG2000, CCITTFax, RunLength, Flate, as well as automatic compression. See the following sections for details on each compression type.

The following Boolean settings determine whether compression takes place on the specified image type. If the value is false , no compression takes place, and the other compression settings for that image type are ignored:

	EncodeColorImages

	EncodeGrayImages

	EncodeMonoImages




Note

In this document, the term encode is used to refer to compression. Strictly speaking, encoding in PDF does not always involve compression.



These settings are Boolean values that determine whether automatic compression , in which the producer application chooses compression settings based on the image contents, is applied:

	AutoFilterColorImages

	AutoFilterGrayImages



See Automatic compression for details. (Automatic compression is not used for monochrome images.)

When automatic compression is chosen, these settings provide further information:

	ColorImageAutoFilterStrategy

	GrayImageAutoFilterStrategy

	ColorACSImageDict

	GrayACSImageDict

	JPEG2000ColorACSImageDict

	JPEG2000GrayACSImageDict



When automatic compression is not chosen, these settings determine the type of compression (JPEG, Flate, etc.) to be used for the specified image type:

	ColorImageFilter

	GrayImageFilter

	MonoImageFilter



These settings provide further information during non-automatic compression:

	ColorImageDict

	GrayImageDict

	JPEG2000ColorImageDict

	JPEG2000GrayImageDict



Images can be compressed using any one of several compression filters. See Section 3.13 of the PostScript Language Reference and Section 3.3 of the PDF Reference for information on the compression filters.


Note

Because the values of settings can be modified in a PostScript file (see Modifying settings during the job), it is possible when using Distiller to explicitly apply different image settings to specific images. This capability does not apply to Creative Suite applications.



The following sections summarize the types of compression and how Adobe PDF settings can be used to control them.


Flate¶

Flate (also called Zip) is a compression method that works well on images with large areas of single colors or repeating patterns, such as screen shots and simple images created with paint programs, and for black-and-white images that contain repeating patterns. The Flate method is lossless , which means it does not remove data to reduce file size and so does not affect an image’s quality.

Adobe’s implementation of the Flate filter is derived from the zlib package of Jean-Loup Gailly and Mark Adler.




JPEG¶

The JPEG compression method is suitable for grayscale or color images, such as continuous-tone photographs that contain more detail than can be reproduced on screen or in print. JPEG is a lossy compression method that can achieve much smaller file sizes than Flate compression, which is lossless. JPEG attempts to reduce file size with the minimum loss of information.

JPEG encoding and decoding is done by means of the direct cosine transformation (DCT) algorithm. This algorithm can take several optional parameters. In PostScript files, these parameters are contained in the DCTEncode parameter dictionary that is used by the DCTEncode filter. See “DCTEncode Filter” in Section 3.13.3 of the PostScript Language Reference for detailed information.

Four PDF settings are dictionaries that specify parameters to control JPEG compression. They are ColorACSImageDict and GrayACSImageDict (for automatic compression) and ColorImageDict and GrayImageDict (for non-automatic compression). These dictionaries are based on the DCTEncode parameter dictionary.

The default value for each of these dictionaries is

<</Qfactor 0.76 /Hsamples [2 1 1 2] /Vsamples [2 1 1 2]>>





The following should be noted about these dictionaries:

	The QFactor entry is the only one that can be set directly. It provides a measure of the trade-off between image compression and image quality. Lower values of QFactor mean higher quality and therefore less compression.

	HSamples and VSamples can be set in the PDF settings file. However, Distiller and other applications ignore these values and provide their own values based on QFactor.  If QFactor >= 0.5, both the HSamples and VSamples arrays are set to [2 1 1 2]. If QFactor < 0.5, then both the HSamples and VSamples arrays are set to [1 1 1 1]. If you save the settings to a file, the computed values for HSamples and VSamples are saved in the file, regardless of the original values present in the file.

	The other entries that can appear in a DCTEncode parameter dictionary are not settable through these image dictionaries. They include Columns , Rows , Colors , QuantTables , HuffTables , ColorTransform , and CloseTarget.  These parameters are set internally in Distiller (or other application) depending on the properties of each image. ColorTransform is set to the “best” value for each image. It is set to 0 if the color space is Lab or Gray or (CMYK AND QFactor >= 0.5). Otherwise, ColorTransform is set to 1.



In the user interface of Distiller and the Creative Suite applications, you can use the Quality field to achieve one of five levels of image quality. The following table shows the values of HSamples , VSamples , and QFactor that correspond to Minimum, Low, Medium, High, and Maximum image quality.

Image compression quality

	Quality
	HSamples
	VSamples
	QFactor

	Minimum
	[2 1 1 2]
	[2 1 1 2]
	2.40

	Low
	[2 1 1 2]
	[2 1 1 2]
	1.30

	Medium
	[2 1 1 2]
	[2 1 1 2]
	0.76

	High
	[1 1 1 1]
	[1 1 1 1]
	0.40

	Maximum
	[1 1 1 1]
	[1 1 1 1]
	0.15




Note

When Distiller processes PostScript files to produce PDF, it normally decompresses all JPEG images and then recompresses them according to the settings in effect. The exception is when the PassThroughJPEGImages setting is true.  Illustrator and InDesign do not use this setting but normally behave as if it were true with regard to placed PDF files containing compressed images. That is, they do not uncompress and recompress them unless color conversion or downsampling takes place. See the reference entry for PassThroughJPEGImages for more information.






JPEG2000¶

JPEG2000 is a new international standard for the compression and packaging of image data. It defines a wavelet-based method for image compression that gives somewhat better size reduction than other methods such as JPEG or CCITT. It is suitable both for images that have a single color component and for those with multiple color components. JPEG2000 is especially well suited for color images with smooth variation in color values.

There is no filter name defined for JPEG2000 compression in the PostScript language definition). PDF files use the JPXDecode filter to decompress JPEG2000 images. See the PDF Reference for information about JPEG2000 compression in PDF files. See also http://www.jpeg.org/JPEG2000.htm .

The JPEG2000 compression filter provides the ability to encode different versions of an image with varying resolution. For example, a thumbnail version of the image may be encoded in the data, followed by a sequence of other versions of the image, each with approximately four times as many samples (twice the width, twice the height) as the previous one. The last version is the highest resolution image, corresponding to the value of the Quality key (see the following table). A PDF viewer may not need to decode the highest resolution version but only the resolution that best matches the current viewing or printing needs. Therefore, fewer bytes need to be processed, a particular benefit when viewing files over the Web. JPEG2000 data also has a built-in tiling structure, such that if the full image is not visible, only those tiles being displayed need to be decoded (to an appropriate resolution).

There are four PDF settings that specify dictionaries for customizing color or grayscale image compression for the JPEG2000 filter:

	JPEG2000ColorImageDict and JPEG2000GrayImageDict are used with regular (non-automatic) compression.

	JPEG2000ColorACSImageDict and JPEG2000GrayACSImageDict are used with automatic compression.



These dictionaries have three entries you can set, as shown in the following table. Since all entries are optional, an empty dictionary is acceptable.

Entries in JPEG2000 image dictionaries

	Key
	Type
	Value

	TileWidth
	integer
	(Optional) The width of JPEG2000 image tiles in samples. Valid values are 128 - 2048; values outside this range generate a range error.

Default value: 256.


	TileHeight
	integer
	(Optional) The height of JPEG2000 image tiles in samples. Valid values are 128 - 2048; values outside this range generate a range error.

Default value: 256.


	Quality
	integer
	(Optional) The required image quality for the highest resolution image in the image progression. Valid values are 1 - 100, where 1 is the lowest quality (highest compression), 99 means visually lossless compression, and 100 means numerically lossless compression.

Default value: 15 (Medium).

In the Compression panel of the Distiller UI, the mapping that occurs for the predefined options is as follows:

	Minimum = 5

	Low = 10

	Medium = 15

	High = 20

	Maximum = 30

	Lossless = 100






The user interface provides a Tile Size option if CompatibilityLevel is set to 1.5 or higher and the Compression setting is JPEG2000 or Automatic (JPEG2000). The amount specified sets both the TileWidth and TileHeight parameters to the same value. If a settings file has been modified so that the values are different, Distiller accepts both values, but Creative Suite applications use the value of TileWidth for both.






Automatic compression¶

Automatic compression for color or grayscale bitmap images means that the application producing the PDF determines the compression filters to be applied to individual images. Setting AutoFilterColorImages and/or AutoFilterGrayImages to true causes automatic compression to take place for color and grayscale images, respectively.

You can use the ColorImageAutoFilterStrategy and GrayImageAutoFilterStrategy settings to choose between two automatic compression strategies. The value of these settings can be either JPEG (the default) or JPEG2000 (which applies only to PDF 1.5 and later files). If you choose JPEG :

	JPEG compression (the DCTEncode filter) is used for 8-bit images that have smooth color changes (low-frequency images). The parameters specified in the ColorACSImageDict or GrayACSImageDict dictionary are used to provide further control. JPEG typically provides greater compression than Flate, but is lossy (can lose information).

	Flate compression is used for all other images. Flate is a lossless compression method, so it is more suitable for images with sharp color changes (high-frequency images). Flate does not take any additional parameters.




Warning

Flate compression is also used when the image uses a DeviceN color space, is small ( < 1024 bytes), extremely wide ( > 40000 pixels) or is ChromaKeyed.



If you choose JPEG2000 :

	Lossy JPEG2000 compression is used for low-frequency images. The compression parameters specified in the JPEG2000ColorACSImageDict or JPEG2000GrayACSImageDict dictionary provide further control of the compression. See JPEG2000 for information about these dictionaries.

	Lossless JPEG2000 compression is used for high-frequency images. The compression JPEG2000ColorACSImageDict or JPEG2000GrayACSImageDict dictionaries are used as well, with the modification that the Quality parameter is forced to 100 (to achieve lossless compression).






Non-automatic compression¶

This section describes the compression options that are available when automatic compression is not chosen. (Automatic compression does not apply to monochrome images.)


Color and grayscale images¶

Grayscale images have one color component and more than one 1 bit per component. Color images have more than one color component and 1 or more bits per component:

	For grayscale images that have 2 or 4 bits per component or color images with 1, 2, or 4 bits per component, only Flate compression is permitted

	For grayscale or color images with 8 bits per component, JPEG, JPEG2000, and Flate are permitted




Warning

For grayscale or color images with more than 8 bits per component, the least significant bits of each image sample are removed, yielding 8 bits per sample.



When image compression is selected (with EncodeColorImages , EncodeGrayImages , or EncodeMonoImages ), the ColorImageFilter , GrayImageFilter , or MonoImageFilter settings specify which compression filter should be used. If no filter name is specified (is absent), lossless Flate is used in all cases. Invalid filter names generate an error.


Note

The following filters are never selected, even if they are specified in the Adobe PDF settings file: LZWEncode , ASCII85Encode , and ASCIIHexEncode.



Under the following conditions, FlateEncode is used even if another filter is specified:

	The selected filter is CCITTFaxEncode and the image is wide (more than 40,000 columns).

	The selected filter is JPXEncode and the image is indexed or ChromaKeyed or CompatibilityLevel is less than 1.5.

	The selected filter is DCTEncode and the image is wide (more than 40,000 columns), indexed, deviceN or ChromaKeyed.

	The selected filter is not supported for the number of colors or sample depth of the particular image being compressed.






Monochrome (black and white) images¶

Monochrome images are defined as images with only one color component and one bit per sample. For monochrome image compression, the available filters are CCITTFaxEncode , RunLengthEncode , and FlateEncode.

The CCITTFaxEncode parameter dictionary specifies options for CCITT compression. See “CCITTFaxEncode Filter” in Section 3.13.3 of the PostScript Language Reference for details. The MonoImageDict setting is a dictionary that contains the same keys as the CCITTFaxEncode parameter dictionary; any of the keys can be customized.

CCITTFaxEncode (CCITT Group 4) compression typically yields the best compression of monochrome images. It is specified by a value of -1 for the K key in the CCITTFaxEncode parameter dictionary, for two-dimensional encoding. A value of 0 for this key corresponds to CCITT Group 3 (one-dimensional encoding).


Note

With the exceptions of the AntiAliasMonoImages and MonoImageDepth parameters, the monochrome image compression parameters also can be applied to stencil masks created by the imagemask operator. Parameter behavior is the same in both cases. For details on imagemask , see the PostScript Language Reference .








Downsampling and subsampling images¶

Downsampling and subsampling are processes that reduce the number of pixels per inch in an image. To do so, pixels in a sample area are combined to make one larger pixel.

The following subsampling and downsampling methods are available:

Subsampling : A pixel in the center of the sample area replaces the entire area at the specified resolution. Subsampling is significantly faster than downsampling but results in images that are less smooth and continuous.

Average downsampling : The pixels in a sample area are averaged, and the average pixel color replaces the entire area at the specified resolution.

Bicubic downsampling : A weighted average is used to determine pixel color and usually yields better results than the simple averaging method of downsampling. This is the slowest but most precise method, resulting in the smoothest tonal gradations.

You should downsample or subsample bitmap images when they are sampled at a higher resolution than the output device supports. The excess data increases the time it takes the device to process the image without improving image quality. For example, by reducing an image from a typical printer resolution of 300 pixels per inch to a typical monitor resolution of 72 pixels per inch, the amount of data needed to represent an image is decreased by a factor of 16, and the image can be drawn on the screen much more quickly.


Downsampling settings¶

These settings are Boolean values that specify whether images of the specified type should be downsampled: DownsampleColorImages , DownsampleGrayImages , and DownsampleMonoImages.

These settings specify the resolution to which images should be downsampled: ColorImageResolution , GrayImageResolution , or MonoImageResolution.

These settings specify the type of sampling (average or bicubic downsampling, subsampling, or none) ColorImageDownsampleType , GrayImageDownsampleType , or MonoImageDownsampleType.

In order for downsampling to actually occur, the ratio of the input image resolution to the desired output resolution (specified by the above parameters) must exceed the downsampling threshold. These settings are used to set the downsampling threshold resolution: ColorImageDownsampleThreshold , GrayImageDownsampleThreshold , and MonoImageDownsampleThreshold.

For example, if ColorImageResolution is 72 and ColorImageDownsampleThreshold is set to 1.5, an image is not downsampled unless its input resolution is greater than 108 pixels per inch:

trunc((72 * 1.5) + .5) = 108 pixels per inch





Threshold values must be between 1.0 through 10.0, inclusive, with a default value of 1.5. (If you set the threshold out of range, it reverts to 1.5.)




Controlling the range of bit depths for which downsampling occurs¶

You can also control the range of bit depths for which downsampling occurs. For example, in a workflow where there is a mixture of 1-bit and 8-bit data, you can downsample the 8-bit data while not touching the 1-bit data. This is done with the following settings:

	ColorImageMinDownsampleDepth can be 1, 2, 4, or 8

	GrayImageMinDownsampleDepth can be 2, 4, or 8



For example, a value of 4 for ColorImageMinDownsampleDepth means that only 4- and 8 bits-per-sample color images are downsampled (assuming DownsampleColorImages is true ). Similarly, a value of 8 for GrayImageMinDownsampleDepth means that only 8 bits-per-sample gray images are downsampled (assuming DownsampleGrayImages is true ).


Note

12 bits-per-sample images (valid in PostScript) are treated exactly as 8 bits-per-sample images because they are converted to 8 bits per sample before downsampling takes place.








Setting compression of text, line art, and objects¶

You can use the CompressPages setting to set the compression of text and line art. For PDF 1.5 and above, you can use the CompressObjects setting to control object-level compression, which is the consolidation of small objects that cannot be individually compressed into streams that can then be efficiently compressed.




Distiller-only image settings¶

The following options apply only to Distiller and are not supported by Creative Suite applications.


Controlling bit depth¶

Bit depth is the number of bits used to represent each color component of each sample of an image. (For example, red, green, and blue are the color components in an RGB image). Distiller supports the control of bit depth by means of the ColorImageDepth , GrayImageDepth , and MonoImageDepth settings.

The bit depth of an image can be decreased (for example, from 8 bits per sample to 4 bits per sample) to save space, regardless of whether the image is downsampled.

If an image is downsampled, the bit depth can be increased to provide anti-aliasing . Anti-aliasing increases the number of bits per sample to preserve some of the information that is otherwise lost by downsampling. Anti-aliasing occurs only in the following conditions:

	The image depth setting specifies a bit depth greater than that of the incoming image.

	The value of the appropriate setting AntiAliasColorImages , AntiAliasGrayImages , or AntiAliasMonoImages is true.  (They need not be true to decrease the bit depth.)

	Sampling is enabled and the downsample thresholds are met; therefore, sampling actually occurs.



In these cases, Distiller first increases the bit depth, then downsamples the image.

For example, suppose a 300 pixel-per-inch monochrome image is downsampled to 150 pixels per inch. If MonoImageDepth is 4 and AntiAliasMonoImages is true , the bit depth of the image is increased prior to downsampling so that it becomes a 4-bit grayscale image. Each of the samples in the downsampled image is produced from four samples in the input image; because each of the input samples can be either on or off, there are 16 possible values for each sample in the downsampled image.

Note that after the bit depth settings have been applied, an input grayscale or monochrome image may be changed to the other type.

	A grayscale image specified to have a GrayImageDepth of 1 is treated as a monochrome image.

	A monochrome image that has a MonoImageDepth of 2, 4, or 8 becomes a grayscale image.



Distiller determines whether to apply compression settings after downsampling has taken place. If the bit depth has changed, the resulting image type determines which encoding setting is examined. For example, if a monochrome image was changed to have a bit depth of 2 or more, the EncodeGrayImages setting would be checked. If encoding is enabled, the image is compressed using the filter type and filter parameter dictionary specified by the settings for the resulting image type.

The PostScript example below shows a code fragment specifying that monochrome images be downsampled to 72 pixels per inch, converted to 2 bits per sample, and encoded using Flate compression. Because the downsampled images are grayscale, the filter is specified using the grayscale rather than the monochrome image settings. Also, assuming that the input image is a 300-pixels-per-inch image, it is downsampled to 75 pixels per inch, the closest possible value to the 72 pixels per inch requested.

<<    /DownsampleMonoImages true
      /MonoImageResolution 72
      /MonoImageDepth 2
      /EncodeGrayImages true
      /AntiAliasMonoImages true
      /GrayImageFilter /FlateEncode
>> setdistillerparams








Specifying a minimum resolution of sampled images¶

In addition to the downsampling settings, starting with version 7.0, Distiller provides settings to check whether images meet a minimum resolution.

ColorImageMinResolution , GrayImageMinResolution , and MonoImageMinResolution are settings that specify an integer between 9 to 64000 representing the minimum resolution for an image.

ColorImageMinResolutionPolicy , GrayImageMinResolutionPolicy , and MonoImageMinResolutionPolicy are settings that specify what happens when images are found that do not meet the minimum resolution. They are names that can take one of the following values:

	OK : the minimum resolution settings are ignored.

	Warning : Any image with a resolution smaller than the specified minimum generates a warning when the PDF file is created.

	Error : Any image with a resolution smaller than the specified minimum generates an error, and the job fails with a limit check error.



The default values for these settings in the predefined Adobe PDF settings files are chosen to be the same as the values for the default downsampling resolution. With these default values, Distiller’s default behavior does not change; that is, Distiller does not enforce any lower limit on image resolution.

These settings can be used to ensure that a PDF file does not have any images with lower resolution than the defined limit. This feature is primarily for prepress people who want to detect that no low resolution images make it into a PDF file. An example is a sampled image in an advertisement where the image must be of a certain quality.

If you get a warning or error about a low resolution image and the settings are correct according to your requirements, you need to go to the source of the image and regenerate it with a higher resolution. Distiller cannot actively alter these images because it doesn’t support up-sampling.

In the following example, Distiller issues a warning every time a sampled gray image with resolution smaller than 100 ppi is placed in the PDF file:

/GrayImageMinResolution 100
/GrayImageMinResolutionPolicy /Warning





The warning messages will look like this:

%%[ Warning: Gray image resolution (92 ppi) is

  lower than /GrayImageMinResolution (100 ppi) ]%%





If GrayImageMinResolutionPolicy is set to Error , then an error message is emitted and the job fails with a limitcheck error. If GrayImageMinResolutionPolicy is set to OK , then distillation continues normally.


Note

While there are no dependencies or interaction between the downsampling settings and the minimum resolution settings, normally you would not set the resolution policy to Warning or Error and at the same time set the minimum resolution to a value that is higher than the downsampling threshold. If you do this, the result is that all images are flagged as having too low a resolution. If the resolution policy is Error , then only PDF files with no images would be distilled.






Controlling downsampling and encoding for each sampled image¶

You can separately control the downsampling and encoding of each sampled image in a PostScript file. To do this, you must make adjustments to the Distiller parameters in the file just before, and appropriate to, each image.




Disabling of image cropping¶

Distiller determines whether more than 10 percent of an image sample falls outside the existing clip path. If so, Distiller normally discards (crops) the image samples that fall outside the clip area, resulting in smaller images and PDF files.

For workflows in which the full-size (non-cropped) images must be extracted for special-purpose image manipulation, it is possible to disable cropping, using the settings CropColorImages , CropGrayImages , and CropMonoImages for color, grayscale, and monochrome images, respectively. These settings are Boolean values:

	false : indicates that Distiller should not clip image samples regardless of the current clip area.

	true : (the default) indicates that Distiller should crop only if the 10 percent criteria is met.




Note

InDesign uses a separate setting, CropImagesToFrames , to control cropping.










Using the font settings¶

Fonts can be included ( embedded ) in a PDF file to ensure that the file can be rendered correctly, regardless of whether the fonts are installed on the machine used to view the file. For example, the exact font may be needed to achieve certain effects such as high-end printing or to ensure portability in situations where the viewer cannot create a substitute font.

Distiller supports the EmbedAllFonts setting, which specifies whether fonts should be embedded. Other Creative Suite applications always embed fonts when possible.


Note

Embedding is subject to license; specific fonts can indicate that embedding is not permitted.



See Font settings for a description of each of the font settings.

Embedded fonts make a PDF file larger. To produce files as small as possible, fonts can be subsetted . When you subset a font, only the information required to draw glyphs (specific renderings) for the characters used in the document is embedded. Subsetting is expressed as a percentage of the font glyphs for a font format. The SubsetFonts and MaxSubsetPct settings are used to control partial embedding of fonts.

Distiller supports additional settings to control which fonts are embedded. The rest of this section describes how Distiller chooses whether to embed fonts.

Distiller maintains lists of fonts that will be embedded or not embedded. AlwaysEmbed specifies fonts that should always be embedded, and NeverEmbed specifies fonts that should never be embedded. These two settings are arrays that contain a list of font names. Optionally, the first element in the arrays may be a Boolean value (true or false ).

	If the first element is not a Boolean value, the array of font names represents the entire list of fonts to be embedded or not embedded.

	If the first element is the Boolean true , the font names in the array are added to Distiller’s internal list of fonts to be embedded (AlwaysEmbed ) or not embedded (NeverEmbed ).

	If the first element is the Boolean false , the font names in the array are removed from Distiller’s internal list of fonts to be embedded (AlwaysEmbed ) or not embedded (NeverEmbed ).



If a font appears in both the NeverEmbed and AlwaysEmbed lists, it is never embedded.

The EmbedAllFonts setting is a Boolean value that, when true , specifies that all fonts be embedded except those in the NeverEmbed array.


Note

A font may not be embedded if its license doesn’t permit embedding, even though its name is in the AlwaysEmbed list or EmbedAllFonts is true.  Furthermore, a symbolic font is always embedded (if license permits) even if its name is in the NeverEmbed list.



In this PostScript example, Minion Regular is always embedded, and ITC Stone Serif Italic and ITC Stone Sans are never embedded.

<< /AlwaysEmbed [ /Minion-Regular ]

          /NeverEmbed [ /StoneSans /StoneSerif-Italic ]

  >> setdistillerparams






Note

The font name given to definefont does not have to match the name in the FontInfo dictionary. For instance, in this example the full name of the font defined as ‘StoneSans’ is ‘ITC Stone Sans.’



The following table identifies the types of fonts that you can (or cannot) embed or subset through Distiller settings.

Distiller control over embedding and subsetting fonts

	Font
	NeverEmbed?
	AlwaysEmbed?
	Subset?

	Type 1
	Yes
	Yes
	Yes

	Type 3
	No - Always embedded
		No - Always subsetted

	True Type (Type 42)
	Yes
	Yes
	No - Always subsetted

	CIDFontType0
	Yes
	Yes
	No - Always subsetted

	CIDFontType1
	No - Always embedded
		No - Always subsetted

	CIDFontType2
	Yes
	Yes
	No - Always subsetted

	OpenType
	Yes
	Yes
	Yes



For additional information on Type 1, Type 3, Type 42, and CID-keyed fonts, see Chapter 5, “Fonts,” in the PostScript Language Reference and Chapter 5 in the PDF Reference.


Note

Distiller 5 and above also support OpenType fonts; Distiller 4 does not. OpenType fonts are based on the Compact Font Format Specification.






Using the color conversion settings¶

This section describes how the color conversion settings are used and explains the correspondence between different groups of settings.

Acrobat Distiller uses a number of settings to control color conversion. As with all Distiller parameters, these settings are defined in the Common namespace (see Common PDF Settings” for details).

Creative Suite applications have a sophisticated user interface for determining color conversions when producing PDF files. The options provided in the UI correspond to settings in the CreativeSuite namespace of the settings files (see Other Namespaces” for details). These options provide a superset of the functionality provided by the Distiller settings in the Common namespace. To maximize interoperability, Creative Suite applications store approximations to their color settings in the Common settings when saving settings files.


Distiller color conversion settings¶

Distiller uses a number of settings related to color. The following settings are only used by Distiller: DefaultRenderingIntent , ParseICCProfilesInComments , PreserveDICMYKValues , PreserveHalftoneInfo , TransferFunctionInfo , and UCRandBGInfo.  They control such features as whether Distiller preserves (that is, passes into the PDF file) halftoning, overprinting, and transfer function information. See Common PDF Settings for information on these settings.

Other color conversion settings are shared to a limited degree with Creative Suite applications. They are:

	ColorSettingsFile : A file containing color settings. When a color settings file is specified, all other color conversion settings are ignored and not selectable in the UI. The Creative Suite applications recognize the existence of this setting as an indication that the user has modified color settings outside the suite.

	CalCMYKProfile , CalGrayProfile , CalRGBProfile : Settings that specify the names of ICC profiles to be used for tagging or converting CMYK, gray, or RGB color data, respectively.

	sRGBProfile : The name of an ICC profile to use for converting color spaces to CalRGB (PDF 1.2) or sRGB (PDF 1.3 and above).




Warning

The Creative Suite applications do not support saving files as PDF 1.2.



ColorConversionStrategy : Specifies a strategy for determining output color family and color space and the inclusion of ICC profiles. (See “ICCBased Color Spaces” in Section 4.5.4 of the PDF Reference for details on profiles.) The ColorConversionStrategy setting has the following possible values.

	Value
	UI equivalent

	LeaveColorUnchanged
	Leave Color Unchanged

	UseDeviceIndependentColor
	
Tag Everything for Color Management

(no conversion)




	UseDeviceIndependentColor-ForImages
	
Tag Only Images for Color Management

(no conversion)




	sRGB
	Convert All Colors to sRGB

	CMYK
	Convert All Colors to CMYK




Note

Distiller leaves Separation and DeviceN color spaces unchanged in PDF output. Creative Suite applications convert the alternate color spaces; for example, when converting to CMYK, the alternate color space is changed to CMYK if necessary and the tint transform is adjusted accordingly.



The following table shows how Distiller converts the PostScript input to the equivalent color space for each ColorConversionStrategy value. The notes below the table provide further information.

PS color space (in) vs. PDF color space (out)

	PS Input
	
LeaveColor

Unchanged



	
UseDevice

Independent

Color



	
UseDevice

Independent

ColorForImages



	sRGB
	CMYK

	Gray text and graphics
	DeviceGray
	ICCBased
	DeviceGray
	DeviceGray
	DeviceGray

	Gray image
	DeviceGray
	ICCBased
	ICCBased
	DeviceGray
	DeviceGray

	RGB text and graphics
	DeviceRGB
	ICCBased
	DeviceRGB
	sRGB
	DeviceCMYK

	RGB image
	DeviceRGB
	ICCBased
	ICCBased
	sRGB
	DeviceCMYK

	CMYK text and graphics
	DeviceCMYK
	ICCBased
	DeviceCMYK
	sRGB
	DeviceCMYK

	CMYK image
	DeviceCMYK
	ICCBased
	ICCBased
	sRGB
	DeviceCMYK

	CIE text and graphics
	ICCBased
	ICCBased
	ICCBased
	sRGB
	DeviceGray/ DeviceCMYK (1)

	CIE image
	ICCBased
	ICCBased
	ICCBased
	sRGB
	DeviceGray/ DeviceCMYK (1)




Note

	CIEBasedA becomes DeviceGray; others become DeviceCMYK.





Notes on the PS color space (in) vs. PDF color space (out) table:

	ICCBased color spaces were introduced in PDF 1.3. When creating PDF 1.2 files using device-independent colors, the color spaces CalGray (for gray), CalRGB (for RGB), or Lab (for CMYK) are used in place of ICCBased.

	sRGB is an industry standard color space, but PDF does not have a color space by this name. Instead, it can be represented precisely in PDF as an ICCBased color space or approximated by a CalRGB color space. During conversion, Distiller chooses either CalRGB or ICCBased as appropriate. (For PDF 1.2, it must choose CalRGB.)






Creative Suite color conversion settings¶

Creative Suite applications use several color conversion settings. The settings, which are in the CreativeSuite namespace, determine whether colors should be converted and which profiles should be included for which objects. They appear in the Output panel of the PDF export dialog box in the user interface. This section explains how the settings are used.


Converting colors¶

The ConvertColors setting determines whether colors should be converted. A value of NoConversion corresponds to “No Color Conversion” in the UI. Values of ConvertToCMYK and ConvertToRGB can correspond to either of the following UI settings, as follows:

	Convert to Destination: All colors are converted to destination profile space unless profiles are same as destination profile. (Native and untagged placed objects are treated as if tagged with the corresponding document profile.)

	Convert to Destination (Preserve Numbers): (This option is not used by Photoshop.) Colors are converted to the destination profile if the color space family (for example, CMYK) does not match the destination color space family. Colors are not converted if there is no embedded profile or if the object is native (that is, created in the application itself as opposed to placed graphics such as images or PDF).






Including profiles¶

This section describes the settings that control whether and which color profiles should be included.

IncludeProfiles is a Boolean value. If it is false , no profiles are included in the generated PDF. The UI setting is “Don’t Include Profiles”. If IncludeProfiles is true and colors are being converted to a destination, the UI specifies “Include Destination Profiles.”

If IncludeProfiles is true and colors are not being converted, the options are:

	Include All Profiles : Includes profiles for all content.

	Include Tagged Source Profiles : Leaves device-dependent colors unchanged and preserves device-independent colors as the nearest possible equivalent in PDF.

	Include All RGB and Tagged Source CMYK Profiles : Includes profiles for tagged RGB and tagged CMYK objects, as well as the Document RGB profile for untagged RGB objects.



These correspond to additional settings, explained below.


Note

In the Photoshop UI, only “Include Destination Profile” is available when converting colors.



UntaggedRGBHandling and UntaggedCMYKHandling determine what should happen to untagged RGB or CMYK objects during conversion. They can either be left untagged (LeaveUntagged ) or tagged with the document profile (UseDocumentProfile ).

The choice of profiles is controlled by DestinationProfileSelector , which can take these values:

	NA means that no color conversion takes place (ConvertColors is NoConversion ).

	WorkingCMYK , WorkingRGB , DocumentCMYK , and DocumentRGB specify the profile to be used for color conversion. When using WorkingCMYK or DocumentCMYK , Creative Suite applications also write the profile name to DestinationProfileName.

	UseName means that the ICC profile specified by DestinationProfileName should be used for color conversion.








Color settings interchange¶

This section describes how Creative Suite applications decide whether to use the CreativeSuite namespace settings or the Common settings and what values they store when saving settings files.


When common settings are used¶

Creative Suite applications use the Common settings when the CreativeSuite settings are not present in the settings file or when there is an inconsistency between the two types of settings. This section describes when the Common settings are used.

The following settings indicate that the settings file was not created by a Creative Suite application:

	A value for ColorSettingsFile other than the empty string or (None).  In this case, the other Common settings are used.

	A value of UseDeviceIndependentColorForImages for ColorConversionStrategy.  In this case, Creative Suite applications override this value and use LeaveColorsUnchanged.



In other cases, the Common settings and CreativeSuite settings are present but inconsistent, indicating that the settings file must have been modified subsequent to being written by a Creative Suite application. In these cases, ColorSettingsFile is empty or unspecified and the following values are present:

	The value of ColorConversionStrategy is UseDeviceIndependentColorForImages.  In this case, Creative Suite applications override this value and use LeaveColorsUnchanged.

	The value of ColorConversionStrategy is CMYK and the value of ConvertColors (Creative Suite) is ConvertToRGB or NoConversion.

	The value of ColorConversionStrategy is sRGB and the value of ConvertColors is ConvertToCMYK or NoConversion.

	The value of ColorConversionStrategy is LeaveColorsUnchanged and the value of ConvertColors is ConvertToCMYK or ConvertToRGB.

	The value of ColorConversionStrategy is LeaveColorsUnchanged , the value of ConvertColors is NoConversion , IncludeProfiles is true , and UntaggedCMYKHandling is UseDocumentProfile.

	The value of ColorConversionStrategy is UseDeviceIndependentColor and the value of ConvertColors is ConvertToCMYK or ConvertToRGB.

	The value of ColorConversionStrategy is UseDeviceIndependentColor , the value of ConvertColors is NoConversion , and IncludeProfiles is false.

	CalCMYKProfile has a non-empty value, DestinationProfileName has a non-empty value that does not match CalCMYKProfile , and the value of ConvertColors is ConvertToCMYK.



In all other cases, the CreativeSuite settings are used.

When the Common settings are used, the following table shows how the Common setting ColorConversionStrategy determines the values of the Creative Suite UI elements. (See the table Conversion from CreativeSuite settings to Common settings for additional information.) Note that in all cases, if color management is off, the Profile Inclusion Policy defaults to “Don’t Include Profiles.”

Creative Suite equivalents for ColorConversionStrategy

	ColorConversionStrategy
	UI elements

	LeaveColorsUnchanged
	Color Conversion = No Conversion

Profile Inclusion Policy = Include Tagged Source Profiles


	UseDeviceIndependentColor
	Color Conversion = No Conversion

Profile Inclusion Policy = Include All Profiles


	UseDeviceIndependentColorForImages
	Color Conversion = No Conversion

Profile Inclusion Policy = Include Tagged Source Profiles


	sRGB
	Color Conversion = Convert to Destination

Profile Inclusion Policy = Include All Profiles

Destination Profile = sRGBProfile


	CMYK
	Color Conversion = Convert to Destination (Preserve Numbers)

Profile Inclusion Policy = Don’t Include Profiles

Destination Profile = CalCMYKProfile





Note

When specifying PDF/X-1a compliance (that is, the value of CheckCompliance is either [PDFX1a:2001 ] or [PDFX1a:2003 ]), Creative Suite applications always use CMYK as the value of ColorConversionStrategy.  See Using the standards settings for more information.






Saving common settings equivalents¶

When saving settings files, the Creative Suite applications write the best possible approximations of their color settings to the Common settings. ColorSettingsFile is always set to ().  This section describes how the other settings are determined.

The following table shows the relationship between the Creative Suite UI, the Creative Suite settings and the Common settings. The first four columns show the possible values of ConvertColors , IncludeProfiles , UntaggedCMYKHandling , and UntaggedRGBHandling.  The last column shows the Common settings that correspond to them. The first column also shows what UI names correspond to the groups of settings.

Conversion from CreativeSuite settings to Common settings

	
ConvertColors

/UI Name



	
Include

Profiles



	
UntaggedCMYK

Handling



	
UntaggedRGB

Handling



	Common settings

	
NoConversion




Don’t Include Profiles

	false
	LeaveUntagged
	LeaveUntagged
	ColorConversionStrategy

= LeaveColorsUnchanged


	Include Tagged Source Profiles
		true
	LeaveUntagged
	LeaveUntagged

	Include All RGB & Tagged Source CMYK Profiles
		true
	LeaveUntagged
	UseDocumentProfile

	Include All Profiles
	true
	UseDocumentProfile
	UseDocumentProfile
	ColorConversionStrategy

= UseDeviceIndependent

Color
CalCMYKProfile = Document CMYK
CalRGBProfile = Document RGB


	
ConvertToCMYK




Convert To Destination

	false
	UseDocumentProfile
	UseDocumentProfile
	
ColorConversionStrategy = CMYK




CalCMYKProfile = destination CMYK profile name

CalRGBProfile = document RGB profile name


		true
			UseDocumentProfile

	Convert To Destination

(Preserve Numbers)

			false
	LeaveUntagged

				true
	LeaveUntagged

	
ConvertToRGB




Convert To Destination

	false
	UseDocumentProfile
	UseDocumentProfile
	
ColorConversionStrategy = RGB




CalCMYKProfile = document CMYK profile name

CalRGBProfile = document RGB profile name


		true
		UseDocumentProfile
	UseDocumentProfile

	
ConvertToRGB




Convert To Destination

(Preserve Numbers)

		false
	UseDocumentProfile
	LeaveUntagged

			true
	UseDocumentProfile
	LeaveUntagged










Using the advanced Adobe PDF settings¶

You can customize advanced Adobe PDF settings. When the CreateJobTicket setting is true , Distiller produces internal job tickets (that is, job tickets within the PDF file). Job ticket keys are created in response to setpagedevice keys and DSC comments.

The relationship between setpagedevice keys and job ticket keys, and the relationship between DSC comments and job ticket keys is described in the following sections. For details on the format and contents of job tickets, see Portable Job Ticket Format, Version 1.1 .


Relationship between setpagedevice keys and job ticket keys¶

The following table lists the setpagedevice keys that Distiller supports and describes where in an internal job ticket Distiller stores the corresponding key values.


Note

setpagedevice keys that are distilled into the JobTicketContents dictionary rather than into the PageRange dictionary must appear in the first page of the PostScript job; otherwise, they are ignored. In the PS page column of the following table, “First” identifies setpagedevice keys that must appear on the first page.



Relationship between setpagedevice keys and job ticket keys

	setpagedevice key
	PS page
	job ticket key

	
Bind




	Bind is unrelated to the Binding setting.



	First
	JobTicketContents::Finishing

	CutMedia
	First
	
If the value of the CutMedia setpagedevice key is less than 4, Distiller represents the setpagedevice value in JobTicketContents::MediaUsage::CutMedia.

Otherwise, it represents the value in JobTicketContents::PrintLayout::Signature::
Sheets::MediaUsage::CutMedia .




	DeviceRenderingInfo/

ValuesPerColorComponent

	Any
	PageRange::Rendering::ValuesPerColor

Component


	Duplex
	First
	
JobTicketContents::PrintLayout




See Appendix B.4 in the Portable Job Ticket Format, Version 1.1 , for a description of the general appearance of a job ticket that can produce duplex printing.


	Fold
	First
	JobTicketContents::Finishing

	HWResolution
	Any
	PageRange::Rendering::Resolution

	Jog
	First
	JobTicketContents::Finishing

	Laminate
	First
	JobTicketContents::Finishing

	ManualFeed
	First
	JobTicketContents::MediaSource::ManualFeed

	MediaClass
	First
	JobTicketContents::MediaSource::MediaClass

	MediaColor
	First
	JobTicketContents::MediaSource::MediaColor

	MediaPosition
	First
	JobTicketContents::MediaSource::Position

	MediaType
	First
	JobTicketContents::Media::Category

	MediaWeight
	First
	JobTicketContents::Media::Weight

	MirrorPrint
	First
	JobTicketContents::MediaUsage::MirrorPrint

	NegativePrint
	First
	JobTicketContents::MediaUsage::NegativePrint

	PageSize
	Any
	PageRange::MediaBox

	PostRenderingEnhance
	Any
	PageRange::Rendering::PostRenderingEnhance

	PreRenderingEnhance
	Any
	PageRange::Rendering::PreRenderingEnhance

	ProcessColorModel
	Any
	PageRange::ColorModel::ProcessColorModel

	SeparationColorNames
	Any
	PageRange::ColorModel::ColorantParams

	SeparationOrder
	Any
	PageRange::ColorModel::ColorantOrder

	Separations
	Any
	PageRange::ColorModel::Separations

	Staple
	First
	JobTicketContents::Finishing

	Trapping
	Any
	PageRange::Trapping::Trapping

	TrappingDetails
	Any
	PageRange::Trapping::TrappingDetails

	Trim
	First
	JobTicketContents::Finishing

	Tumble
	First
	
JobTicketContents::PrintLayout




Such a job ticket is identical to that described for the Duplex setpagedevice key, except the CTM for the Back surface is rotated 180 degrees.







Relationship between PostScript comments and job ticket keys¶

When the ParseDSCComments setting is true , Distiller interprets certain PostScript comments to produce true job ticket PlaneOrder objects. Such PostScript comments include %%Page: (which is more specifically a DSC comment), %%QRKPageBegin: , and %%PlateColor:.  Distiller also supports the %%PlateColor: PostScript comment; however, use of that comment is discouraged.






Using the standards settings¶

The Standards settings provide control over PDF/A- and PDF/X-compliant output:

	PDF/A is a proposed ISO standard for the long-term preservation (archival) of electronic documents.

	PDF/X is a focused subset of PDF designed specifically for reliable prepress data interchange. It is an International Standards Organization (ISO) standard ( www.iso.org ).



See Standards settings for details on the settings that are relevant to standards compliance.


Using the compliance checking settings¶

In Acrobat 6, the PDFX1aCheck and PDFX3Check settings were introduced to check for compliance with PDF/X-1a (2001) and PDF/X-3 (2002), respectively.

The CheckCompliance setting was introduced in Distiller 7 and is supported by Creative Suite applications. It specifies the standard against which the document’s compliance is checked. It is an array of strings, each of which is the name of a standard.


Note

Currently only one string may appear in the array.



In Distiller 7 and the Creative Suite, CheckCompliance , if present, takes precedence over PDFX1aCheck and PDFX3Check :

	/CheckCompliance [ /PDFX1a:2001 ] has the same meaning as /PDFX1aCheck true

	/CheckCompliance [ /PDFX3:2002 ] has the same meaning as /PDFX3Check true

	Other values of CheckCompliance have no corresponding Distiller 6 values.



If a settings file contains CheckCompliance and not PDFX1aCheck or PDFX3Check , the appropriate values of PDFX1aCheck and PDFX3Check are written out when the file is saved to provide backward compatibility with Distiller 6 for testing of PDF/X-1a:2001 and PDF/X-3:2002 standards compliance. That is,

/CheckCompliance [ /PDFX1a:2001 ]





without PDFX1aCheck and PDFX3Check is written out and also generates:

/PDFX1aCheck true
/PDFX3Check false





Similarly:

/CheckCompliance [ /PDFX3:2002 ]





without PDFX1aCheck and PDFX3Check is written out and also generates:

/PDFX1aCheck false
/PDFX3Check true





Any other values for CheckCompliance also generates:

/PDFX1aCheck false
/PDFX3Check false





If PDFX1aCheck and/or PDFX3Check are present, they are preserved when the file is saved.

If CheckCompliance is not present in a file:

	If PDFX1aCheck is present and true , CheckCompliance takes the value [/PDFX1a:2001].

	Otherwise, if PDFX3Check is true , CheckCompliance takes the value [/PDFX3:2002].

	Otherwise, CheckCompliance takes the value [/None].






Using the PDF/X output intent settings¶

In a PDF/X compliant file, the document catalog must contain an OutputIntents entry that specifies a PDF/X output intent dictionary . Several settings are used to specify the entries in this dictionary. The rest of this section explains how they work.

Distiller uses the following settings to create the output intent dictionary: PDFXOutputIntentProfile , PDFXOutputCondition , PDFXOutputConditionIdentifier , and PDFXRegistryName.  For compatibility, these settings are also used by Creative Suite applications , along with the Creative Suite-specific PDFXOutputIntentProfileSelector setting.

For Distiller only, these settings are ignored in the case where the output intent dictionary is specified explicitly in the PostScript file (by means of pdfmark operators). The rest of this discussion assumes the PostScript file does not specify this information.

The PDF/X output intent dictionary is described in Section 10.10.4 of the PDF Reference. It specifies the following entries (note that these are PDF names):

	OutputConditionIdentifier : A string identifying the intended printing condition of the document. Typically, it is the reference name of a standard production condition in an industry-standard registry such as the ICC Characterization Data Registry (see RegistryName below). It can be specified by the PDFXOutputConditionIdentifier setting.

	DestOutputProfile : A PDF/X output intent profile , which is a stream representing an ICC profile that defines the transformation from the PDF document’s source colors to the output device colorants. It is not required if OutputConditionIdentifier specifies a standard production condition. However, Creative Suite applications always store the profile.

	OutputCondition : An optional human-readable comment describing the printing condition. It can be specified by the PDFXOutputCondition setting.

	RegistryName : A string identifying the registry that defines the condition defined by OutputConditionIdentifier.  It can be specified by the PDFXRegistryName setting.

	Info : A string containing additional information. Distiller and Creative Suite aplications use this entry to store the profile name.



The PDFXOutputIntentProfile setting is used to identify a profile name. It may have one of the following values:

	(None) or the empty string () are supported by Distiller only. This value means that the PostScript document must specify the output intent destination profile for PDF/X validation to succeed.

	(Use Output Condition Identifier) is also supported by Distiller only and overridden by Creative Suite applications (as described in the rest of this section). In this case, Distiller uses the value defined by PDFXOutputConditionIdentifier and a profile is not included in the PDF file.

	The name of the output intent destination profile. This profile is embedded as the value of the DestOutputProfile entry.




Warning

For Distiller only, if the profile corresponding to the name is not present on the system, Distiller stores the profile name in OutputConditionIdentifier.



Creative Suite applications use the PDFXOutputIntentProfileSelector (in the CreativeSuite namespace) to identify the profile, which can be a name specified by PDFXOutputIntentProfile or a reference to the Working CMYK, Working RGB, Document CMYK, or DocumentRGB profile.

As mentioned above, Creative Suite applications do not support the value of (Use Output Condition Identifier) for PDFXOutputIntentProfile.  When they encounter it in a settings file, they override it as follows:

	PDFXOutputIntentProfileSelector and DestinationProfileSelector are set to UseName.

	If PDFXOutputConditionIdentifier specifies a known condition (that is, one that maps to a specific set of characterization data at www.color.org (the ICC web site), then PDFXOutputIntentProfile and DestinationProfileName are set to the name of the profile associated with the condition. The following table shows a list of profiles and their corresponding characterization data:



	ICC Profile
	Characterization data

(output condition identifier)


	U.S. Web Coated (SWOP) v2
	CGATS TR 001

	Euroscale Coated v2
	FOGRA1

	Euroscale Uncoated v2
	FOGRA4

	Europe ISO Coated FOGRA27
	FOGRA27

	Japan Color 2001 Coated
	JC200103

	Japan Color 2001 Uncoated
	JC200104

	Japan Color 2002 Newspaper
	JCN2002



	If PDFXOutputConditionIdentifier specifies an unknown condition and DestinationProfileName is a “PRTR” profile and maps to an unknown condition, then PDFXOutputIntentProfile is set to the value of DestinationProfileName.

	If PDFXOutputConditionIdentifier specifies an unknown condition and DestinationProfileName is not a “PRTR” profile or maps to a known condition, then

	If ColorConversionStrategy is CMYK , PDFXOutputIntentProfile and DestinationProfileName are set to (U.S. Web Uncoated V2).

	If ColorConversionStrategy is sRGB , PDFXOutputIntentProfile and DestinationProfileName are set to (ROMM RGB).







Warning

For Creative Suite applications, when color management is on and PDF/X compliance has been specified, the effective profiles specified by DestinationProfileName , CalCMYKProfile and PDFXOutputIntentProfile must be the same.



In addition, when specifying PDF/X-1a compliance (that is, the value of CheckCompliance is either [PDFX1a:2001] or [PDFX1a:2003] ), if the value of ColorConversionStrategy is not CMYK , the Creative Suite applications use the following values:

	ColorConversionStrategy = CMYK

	ConvertColors = ConvertToCMYK

	UntaggedCMYKHandling = LeaveUntagged

	UntaggedRGBHandling = UseDocumentProfile

	IncludeProfiles = false






Distiller examples¶

The following examples show how Distiller sets the values in the output intent dictionary.


Setting the output intent dictionary to Euroscale Uncoated v2¶

In this example, the PDFXOutputIntentProfile is set to (Euroscale Uncoated v2) , whose corresponding output condition identifier (FOGRA4 ) is known by Distiller.

12 0 obj
  <<
          /Type /OutputIntent
          /S /GTS_PDFX
          /OutputConditionIdentifier (FOGRA4)
          /RegistryName (http://www.color.org)
          /Info (Euroscale Uncoated v2)
          /DestOutputProfile 11 0 R
  >>
 endobj
 11 0 obj
  <<
          /N 4
          /Length 388226
          /Filter /FlateDecode
  >>
  stream
 ... ICCProfile data ...
 endstream
 endobj





	Setting the output intent dictionary to U.S. Web Uncoated v2



In this example, PDFXOutputIntentProfile is set to (U.S. Web Uncoated v2) and Distiller does not know the corresponding output condition identifier. In this case, the value of the output condition identifier is set to the profile name.

12 0 obj
  <<
          /Type /OutputIntent
          /S /GTS_PDFX
          /OutputConditionIdentifier (U.S. Web Uncoated v2)
          /Info (U.S. Web Uncoated v2)
          /DestOutputProfile 11 0 R
  >>
 endobj
 11 0 obj
  <<
          /N 4
          /Length 386435
          /Filter /FlateDecode
  >>
  stream
 ... ICCProfile data ...
 endstream
 endobj
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