
1March 2023 | Provisioning Adobe Acrobat Sign Design Considerations

Managing OAuth tokens for your
customer accounts.
In addition to managing e-sign workflows on your customers’ behalf,
your multi-tenant SaaS application can create and manage new
accounts for your customers. This will involve storing and retrieving
the OAuth tokens your partner app uses to access the accounts you
create for your customers. These tokens must be encrypted at rest.

As you design your app to manage token storage, retrieval, and
refresh, keep in mind the following:

• Authorization Code expires in 5 minutes

• Access Token expires in 60 minutes

• Refresh Token expires in 60 days

What does provisioning mean?
In this context, “provisioning” means executing POST/accounts to
create a new account for one of your customers. (We do not think
of POST/users as part of provisioning because it doesn’t create a
new Acrobat Sign account.)

What kind of account are we creating?
The account created by POST/accounts:

• Exists as an equal entity to your own account, with full rights
and privileges

• Is not a subaccount. It is not subordinate to your partner
account, nor is it a group that could be managed through the
Acrobat Sign web UI.

• Once created, there is no relationship between the new admin
account and the entity that ran POST/accounts.

• Accounts that you create for your customers are aggregated
into a channel for billing purposes and to provide Adobe with
the ability to make certain configuration changes, across all
accounts in the channel.

• The account belongs to the new admin, and your partner app
will not be able to access it until the new admin grants access
to your app via the OAuth Authorization Request and Consent
flow (via the embed link)

What is geo-sharding, and why is it important
in this context?
Geo-sharding is the technique used to store data close to the
customer, based on the customer’s country code.

When you create a new account, Acrobat Sign will locate the
account data in the geographic region associated with the
countryCode specified in the JSON payload for POST/accounts.
If a region has multiple shards associated with it, Acrobat Sign
will use a round-robin approach to choose a shard from within
that region. (For example: JP1 is the only shard associated with
the Japan region, while NA1, NA2, NA3, and NA4 are used for
countryCodes associated with the North America region.)

All API calls must include the correct shard for the account. Using
the incorrect shard will result in 403 Forbidden errors that may
occur only intermittently and may be difficult to troubleshoot.

The following endpoint returns the shard you should use for
POST/account:

• GET/baseUris—Returns the shard inside of apiAccessPoint,
based on the Bearer Token provided in the Authorization
header

{
 “apiAccessPoint”: “https://api.na4.adobesign.com/”,
 “webAccessPoint”: “https://joesBikeShop.na4.adobesign.com/”
}

 – The provisioning use case uses your provisioning
integration key as the Bearer Token to return the
appropriate shard for your calls to POST/accounts.

 – The shard identified in apiAccessPoint above, is “na4” and
would be used as follows: POST/https://api.na4.adobesign.
com/api/rest/v6/accounts.

The following guidelines will help you understand how to use the Adobe Acrobat Sign account provisioning
API to create new accounts for your customers.

Provisioning Adobe Acrobat Sign
design considerations

2March 2023 | Provisioning Adobe Acrobat Sign Design Considerations

The following endpoint returns the shard you will use when making
any other API calls on the new account. (You could also run GET/
baseUris using the OAuth access_token of the new account.)

• POST/token—Returns the shard within api_access_point,
(“na3” in the case below) as well as the access_token and
refresh_token that you will need to store for each customer
that grants account access to your partner app

{
“access_token”:
“3AAABLblqZhCRAx7kdeCpju3Vh94mmZ0LIYtggGIKgODF_
hH3MB3ocmzzB8T”,

“refresh_token”: “3AAABLblqZhBXZeXJLc_kSjfNrgzlYiwi5CBFrsU
kMWrt2oOWi8llaYaPc-kxdA*”,

“api_access_point”: “https://api.na3.adobesign.com/”,
“web_access_point”: “https://joesBikeShop.na3.adobesign.com/”,
“token_type”: “Bearer”,
“expires_in”: 3600

}

New account provisioning flow:

GET/ https://secure.adobesign.com/api/rest/v6/baseUris—
Uses your provisioning integration key to return baseUris (aka
{{apiAccessPoint}}) for POST/accounts

POST/ {{apiAccessPoint}}/api/rest/v6/accounts

• Uses shard returned by GET/baseUris

• Required JSON: customer-admin email address

• Highly recommended but optional: countryCode (used to
determine correct geo-shard for new account)

• Uses IntegrationKey (with account_write scope enabled; PSM
team must enable this)

• Returns accountId and userId for the new admin. You can
use these as the unique keys to store information about the
account’s shard, authentication tokens, admin info, and so on.

• Generates:

 – Activation email to new admin to set password

 – Activation email to new admin to agree to Terms of Use

New-account admin—Responds to Activation emails.

Partner app—Initiates Authorization Request (aka URL that
grants account access to your partner app, or embed link)

New-account admin—Responds to Authorization Request

• Signs on with new credentials

• Provides consent for your partner app to access the new account

• Is redirected

Partner app

• Redirects to the redirectUrl supplied when you created your
partner app (aka clientId, appId) in the web admin console (aka
WebUi). This code expires in 5 minutes.

• Captures Authorization Code from “code=” parameter returned
to redirectUrl

• Uses this Authorization Code (along with the Partner app
ClientId and ClientSecret) to initiate the OAuth flow:

POST/token
curl --location --request POST ‘https://api.na4.adobesign.
com//oauth/v2/token’ \

--header ‘Content-Type: application/x-www-form-
urlencoded’ \

--header ‘Authorization: Bearer 3AAJl1pbkP0WPsYtnPMVee-
haxGbcndSLQF’ \

--data-urlencode ‘code=CBNCKBAAHBCAABAAC3FJuIrvk-
1SxOFKHkCI2-OoCq2gTxHC’ \

--data-urlencode ‘client_id=CBJCHBCAABAA--
qqbqZEb2kNRvOrp41AzRs_vpXyxRkQ’ \

--data-urlencode ‘client_
secret=4MhTcaohhNofdwBEgnhHJIeBT3tEjoAM’ \

--data-urlencode ‘grant_type=authorization_code’ \
--data-urlencode ‘redirect_uri=https://oauth.pstmn.io/v1/
callback’

Response:
{

“access_token”: “3AAABLblqZhODF_hH3MB3ocmzzB8T-
ppWKZTLvb-3WXsl0”,

“refresh_token”: “3AAABLblqZhBXZeXJLc_
kSjfNrgzlYiwi5CBFaYaPc-kxdA*”,

“api_access_point”: “https://api.na3.adobesign.com/”,
“web_access_point”: “https://embedprovisiontest.na3.
adobesign.com/”,

“token_type”: “Bearer”,
“expires_in”: 3600

}

The partner app stores token and api_access_point/shard
information for the new account and refreshes tokens as needed.

POST/refresh

curl --location --request POST ‘https://api.na4.adobesign.com//
oauth/v2/refresh’ \

--header ‘Content-Type: application/x-www-form-urlencoded’ \
--header ‘Authorization: Bearer 3AAABLblqZhDnssmTBKy7_
JTp0BYiTZ3bcndSLQF’ \

--data-urlencode ‘client_id=CBJCHBCAABAA--
qqbqZEb2kNRvOrp41AzRs_vpXyxRkQ’ \

--data-urlencode ‘client_
secret=4MhTcaohhNofdwBEgnhHJIeBT3tEjoAM’ \

--data-urlencode ‘refresh_
token=3AAABLblqZhDxAN8bvDjgPoJy0FADXuI*’ \

--data-urlencode ‘grant_type=refresh_token’

Response:

{
“access_token”: “3AAABLblqZhDpbkeOfkTY7Jk8YLe-
haxGbcndSLQF”,

“token_type”: “Bearer”,
“expires_in”: 3600
}

https://experienceleague.adobe.com/docs/document-services/tutorials/acrobatsign/oem/creating-an-embed-link.html?lang=en
https://experienceleague.adobe.com/docs/document-services/tutorials/acrobatsign/oem/generating-an-access-token.html?lang=en

3March 2023 | Provisioning Adobe Acrobat Sign Design Considerations

Provisioning new Acrobat Sign accounts via API

Adobe certi�es your app.

Create new IntegrationKey
“application” that has:

account_write:account scope
ONLY

(Integration keys do not use
OAuthclientId & clientSecret.)

PSM team activates
account_write scopes

for your account.

• Authorization Code expires in 5 minutes
• Access Token expires in 60 minutes
• Refresh Token expires in 60 days

GET/baseUris uses the new
iKey to return the shard and

apiAccesPoint to use with
POST/accounts.

Partner app captures
Authorization Code from

redirectUrl.

GET/token For each new customer, partner
app stores token and shard info

returned by GET/token and
retrieves and refreshes tokens as

needed (POST/refresh).

Accepts:
• Authorization Code
• ClientId
• ClientSecret

Returns:
• access_token
• refresh_token
• api_access_point

POST/accounts
uses shard from GET/

baseUris to send activation
emails to new admin.

New admin responds to
activation emails.

Partner app presents admin
with “embed_link” to initiate

oAuth authorization and
consent �ow.

New admin signs in,
grants authorization to

your Partner app,
and is redirected.

Adobe action

Partner Sign
Admin action

Partner app
action

New customer
admin action

Adobe, the Adobe logo, Acrobat, and the Adobe PDF logo are either registered trademarks or trademarks of Adobe in the United States and/or other countries.
All other trademarks are the property of their respective owners.
© 2023 Adobe. All rights reserved. 3/23

