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Definition of Gaussian Process
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GP is a prior distribution over function f.

G i . pe L.
Processcs m Specified by giving
m mean function p(x)
m covariance function & (x1, x2)
m For any n points xq,..., X,

(y1,..-,¥n) ~ Normal (m, C)
yi = f(xi)
m; = 1 (x)

Cij = K (xi,xj)

m x must always produce a valid covariance matrix.



Covariance function / kernels
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Symmetric: & (x1,x2) = K (x2, x1).
Positive semi-definite (PSD): v/Cv > 0 for all v
B Cj = k(x,x).
m May be positive definite (PD): v/Cv > 0 for all v # 0.
m PSD: Cannot choose f (x1), ..., f (x,) arbitrarily.

m Often stationary: K (x1,x2) depends only on x; — xp

Gaussian
Processes

m In this case, write x (d) where d = x; — xo.

Example: periodic kernel

kp (d) = 0% exp <—2Si”2gd/p)>




Periodic kernel, / =1
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Periodic kernel, ¢ = 0.5
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Periodic kernel, ¢ = 0.25
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Gaussian
Processes

Draw from periodic kernel, £ = 0.5
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Centering around zero
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@enester Our periodic kernel is positive definite
Processes

m hence cannot impose requirement fop f(x)dx = 0.
Modify the kernel:

m k*(d) =s- (k(d) — A).

m Center around zero.

m Stretch it out so x(0) = 1 (or 02) again.

m Is it still a valid kernel (positive semi-definite)?

m Yes.
m Proof is an exercise for the reader.

m See brown curves in plots of kernel.
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Quasi-periodicity
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Allow small changes from one period to next.

Product of two valid kernels is a valid kernel.

Gaussian
Processes

m Use

o) - (e (2 GO )

Should have ¢ very close to 1.

A chosen to center kp.

m s chosen so that kp(0) = 1.



Review: Quasi-sinusoidal SSM
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Y (S (0, ¢, 02) is a SSM equivalent to
Yt = 01

2
Seasonal SSM a1 ~ Normal (07 g 12)

components

ary1 = pUpar + e
Nt ~ Normal (O, (1 — gbz) 0212)
Uy = counterclockwise rotation by angle 6.

If $ =1 then y; = f(t), where

a ~ Rayleigh (o)
) ~ Uniform (0, 27)
f(x) £ acos (x0 + ).



Review: Quasi-sinusoidal SSM
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Seasonal SSM
components

Rayleigh distribution for o = 1.




Alternative form, quasi-sinusoidal SSM
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QS (0, o, 02) is equivalent to

Seasonal SSM Yt = a1t cos (9 (t - 1)) + a2t Sin (e(t - 1))
components ai71 - Normal (0’ 02)
Qj 41 = Q¢ + it

ni,+ ~ Normal (0, (1 — ¢2) 02)

Linear regression with time-varying coefficients from AR(1)
processes.

#=0: QS (O, o, 02) yields an AR(1) process for y1,ys, ...



Review: Quasi-periodic SSM
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QP(p,¢,c) = Mo+ M1+ + M,
Mk = QS (27Tk/p, ¢a Ck)

Seasonal SSM u Set CO - O to center.
components

m Stationary, mean 0, variance Y ;_, ck.
m If ¢ =1 and p is integer, then y; = f(t), where

=

ax ~ Rayleigh (ck/2> , 0<k<n

Yy ~ Uniform (0,27), 0<k
t)—Zakcos <27rk + g )
k=0

m Whence ¢? Lots of parameters. ..

<n




SSMs and GPs
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m SSM: joint distribution for y;., and as., is MV normal.
m Marginalize: distribution for y;., is MV normal.
Seasonal SSM m SSMs define GPs on N* = {1,2 .. .}|

components
m QP (p, ¢, c) as a GP:

mu(t)=0
B k(t1, t2) = Clyt, ye+j] depends only on j:

c [Yt7)/t+j] = ¢j"fo(j)

ko(j) = Z ck cos (2mkj/ p)

k=0

m ¢ is coefficient of term k in Fourier series for xo(-)!



From kernel to QP SSM coefficients
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Choose kernel ~y: periodic with period 1, v(0) = 1.
m Fully defined by values on [0,1/2].

Seasonal SSM Find the Fourier series for ~, truncate:

components
n
v(x) = v(x;n) = Z ay cos (2mkx) .
k=0

Bochner's Theorem guarantees a; > 0.
Set ¢, = axo? for all k.
Then

ro(j) = Y ako® cos (2mkj/p) = o%y (j/p; n).
k=0



Example
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2sin? (7x
) = esp (-2,
Seasonal SSM
components oo
= Z ay cos (2mkx)
k=0
I (072
oy — b (7).
“exp ((2)
2 ifk>0
by = .
1 ifk=0
Cx = aka2.

I, is modified Bessel function of the first kind.




Aliasing (1)

State Space

M Suppose that p and N are integers.
QS (2m(k + Np)/p, ¢, 0°) = QS (2mk/p, ¢, 52) since

Seasonal SSM 27T (k + Np) _ 27Tk

components p

QS (0, 0, a%) + QS (97 o, a%) =QS (0, b, 02 + a%).
So

+ 27 N.

My + Misnp
= QS (2mk/p, ¢, ck) + QS (27 (k + Np)/p, ¢, Ck+np)
= QS (27rk/p, (st Ck + Ck+Np)

Can sum all ¢y pp into ck, only keep terms k < p.



Aliasing (2)
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Suppose that p is an integer.
Seasonal SSM QS (_6’ ¢)7 0-2) = QS (97 ¢’ 02) since cos (_9) = cos (9)
components SO

M+ Mp_i

= QS (2mk/p, ¢, ck) + QS (2w (p — k) /P, b, cp—k)
= QS (27k/p, ¢, ck) + QS (—2mk/p, &, cp—k)
=QS(27k/p, P, ck + cp—k) -



Centering
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m Started out with ¢p # 0.

m Unaliasing added to ¢p.

S | SS
s m Set ¢g = 0 and rescale:
¢ =0
2
o
*
Cx = ?Cka 1 S k S n
n
52 = E Ck
k=1

m Yields k*(d) = s - (k(d) — co)-



Conclusion
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Can handle multiple seasonality.

Can have non-integer period.

Conclusion

Borrow kernel(s) from GP literature.

Few parameters required, even for long periods:
m 9, o2 L

Computational cost: 2n state vars, O (n?).



