State Space Models, Lecture 2
 Local Linear Trend, Regression, Periodicity

09 April 2018
© 2019 Adobe Inc.

Review of Lecture 1

State-space models:

- Unobserved hidden state
- Observed values: function of hidden state, plus noise
- Sum of SSMs

DLMs:

- Linear evolution of state; Gaussian (normal) noise
- Random walk: σ_{η}^{2}
- $\operatorname{AR}(1): \sigma_{\eta}^{2}, \phi, \mu$
- Local level model: RW or AR1 plus noise
- Integrated RW / AR(1)

Local Linear Trend

Integrated RW / AR(1), plus LLM.

$$
\begin{aligned}
\beta & \sim \operatorname{AR1}\left(\phi_{\beta}, \mu_{\beta}, \sigma_{\beta}^{2}\right) \\
\gamma_{1} & \sim \operatorname{Normal}\left(\mu_{\gamma 0}, \sigma_{\gamma 0}^{2}\right) \\
\gamma_{t+1} & =\gamma_{t}+\beta_{t} \\
\alpha & \sim \operatorname{AR1}\left(\phi_{\alpha}, 0, \sigma_{\alpha}^{2}\right) \\
y_{t} & =\gamma_{t}+\alpha_{t}+\epsilon_{t} \\
\epsilon_{t} & \sim \operatorname{Normal}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

γ_{t} : trend; α_{t} : local level; ϵ_{t} : noise.

Local Linear Trend (plot)

level

trend

Time-varying Linear Regression

Linear regression with coefficients that vary over time.

$$
\begin{aligned}
y_{t} & =X_{t} \alpha_{t}+\epsilon_{t} \\
\epsilon_{t} & \sim \operatorname{Normal}\left(0, \sigma_{\epsilon}^{2}\right) \\
\alpha & \sim \operatorname{AR1}\left(\phi, \mu_{\alpha}, \sigma_{\alpha}^{2}\right)
\end{aligned}
$$

(Note: X_{t} is a row vector.)
Use case: external covariates.

Seasonality / Periodicity

"Seasonality": repeating periodic pattern

- Daily
- Weekly
- Yearly

Periodic Model - Attempt 1

If period is N, use

$$
\begin{aligned}
y_{t} & =\alpha_{t} \\
\alpha_{1} & \sim \operatorname{Normal}\left(0, \sigma^{2}\right) \\
& \vdots \\
\alpha_{N} & \sim \operatorname{Normal}\left(0, \sigma^{2}\right) \\
\alpha_{t} & =\alpha_{t-N} \quad \text { for } t>N
\end{aligned}
$$

But this is non-Markovian:

- Should only have prior on α_{1}.
- α_{t} should depend only on α_{t-1}.

Periodic Model - Attempt 2

Use standard trick:

$$
\text { Let } \beta_{t}=\left(\alpha_{t}, \alpha_{t-1}, \ldots, \alpha_{t-N+1}\right)^{\prime} \text {. }
$$

Then

$$
\begin{aligned}
y_{t} & =\beta_{t, 1} \\
\beta_{1, i} & \sim \operatorname{Normal}\left(0, \sigma^{2}\right), \quad 1 \leq i \leq N \\
\beta_{t+1} & =\left(\beta_{t, N}, \beta_{t, 1}, \ldots, \beta_{t, N-1}\right)^{\prime}
\end{aligned}
$$

But... not zero-centered: we require

$$
\sum_{i=1}^{N} \beta_{t, i}=0
$$

Periodic Model - Attempt 3

Define

$$
\beta_{t, N}=-\sum_{i=1}^{N-1} \beta_{t, i}
$$

Then

$$
\begin{aligned}
y_{t} & =\beta_{t, 1} \\
\beta_{1, i} & \sim \operatorname{Normal}\left(0, \sigma^{2}\right), \quad 1 \leq i \leq N-1 \\
\beta_{t+1} & =\left(-\sum_{i=1}^{N-1} \beta_{t, i}, \beta_{t, 1}, \ldots, \beta_{t, N-2}\right)^{\prime}
\end{aligned}
$$

But the prior is asymmetric:

$$
\beta_{1, N} \sim \operatorname{Normal}\left(0,(N-1) \sigma^{2}\right)
$$

Multivariate Normal Distribution

$$
\boldsymbol{x} \sim \operatorname{MVNormal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

N correlated variables, each having a normal distribution:

- μ_{i} : mean for x_{i}
- $\Sigma_{i i}$: variance for x_{i}
- $\sigma_{i}=\Sigma_{i i}^{1 / 2}$
- $\Sigma_{i j}$: covariance for x_{i} and x_{j}
- correlation is $\Sigma_{i j} /\left(\sigma_{i} \sigma_{j}\right)$.

Symmetric Effects Prior

If \boldsymbol{x} has length $N-1$ and we use

$$
\boldsymbol{x} \sim \operatorname{MVNormal}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {eff }}\right)
$$

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\text {eff }} & =\left(\begin{array}{ccccc}
\sigma^{2} & \rho \sigma^{2} & \cdots & \rho \sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2} & \cdots & \rho \sigma^{2} & \rho \sigma^{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\rho \sigma^{2} & \rho \sigma^{2} & \cdots & \sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \rho \sigma^{2} & \cdots & \rho \sigma^{2} & \sigma^{2}
\end{array}\right) \\
\rho & =-1 /(N-1) \\
x_{N} & =-\sum_{i=1}^{N-1} x_{i}
\end{aligned}
$$

then

- mean of x_{i} is $0,1 \leq i \leq N$;
- variance of x_{i} is $\sigma^{2}, 1 \leq i \leq N$.

Periodic Model - Attempt 4

Define

$$
\begin{aligned}
y_{t} & =\beta_{t, 1} \\
\beta_{1} & \sim \operatorname{MVNormal}\left(0, \boldsymbol{\Sigma}_{\mathrm{eff}}\right) \\
\beta_{t+1} & =\left(-\sum_{i=1}^{N-1} \beta_{t, i}, \beta_{t, 1}, \ldots, \beta_{t, N-2}\right)^{\prime}
\end{aligned}
$$

But what if we want to allow the periodic pattern to slowly change over time?

Quasi-Periodic Model - Attempt 1

Add some random drift:

$$
\begin{aligned}
y_{t} & =\beta_{t, 1} \\
\beta_{1} & \sim \operatorname{MVNormal}\left(0, \boldsymbol{\Sigma}_{\text {eff }}\right) \\
\beta_{t+1} & =\left(-\sum_{i=1}^{N-1} \beta_{t, i}, \beta_{t, 1}, \ldots, \beta_{t, N-2}\right)^{\prime}+\epsilon_{t} \\
\epsilon_{t} & \sim \operatorname{MVNormal}\left(\mathbf{0}, \rho \boldsymbol{\Sigma}_{\text {eff }}\right)
\end{aligned}
$$

where $N \rho \ll 1$.
But random-walk behavior:

$$
V\left[\beta_{t i}\right]=\sigma^{2}(1+(t-1) \rho), \quad t \geq 1,1 \leq i \leq N
$$

Magnitude of pattern increases, on average, over time.

Quasi-Periodic Model - Attempt 2

Add some damping (like AR(1) model):

$$
\begin{aligned}
y_{t} & =\beta_{t, 1} \\
\beta_{1} & \sim \operatorname{MVNormal}\left(0, \boldsymbol{\Sigma}_{\text {eff }}\right) \\
\beta_{t+1} & =\phi \cdot\left(-\sum_{i=1}^{N-1} \beta_{t, i}, \beta_{t, 1}, \ldots, \beta_{t, N-2}\right)^{\prime}+\epsilon_{t} \\
\epsilon_{t} & \sim \operatorname{MVNormal}\left(\mathbf{0}, \rho \boldsymbol{\Sigma}_{\mathrm{eff}}\right) \\
\rho & =1-\phi^{2}
\end{aligned}
$$

where $N \rho \ll 1$. Guarantees

$$
V\left[\beta_{t, i}\right]=\sigma^{2}, \quad t \geq 1,1 \leq i \leq N
$$

But... What if N is large? (complexity, estimation) Non-integer periods?

Fourier Series

Decompose periodic function $f(x)$:

$$
f(x)=\sum_{k=1}^{\infty}\left(a_{k} \sin (2 \pi k x / P)+b_{k} \cos (2 \pi k x / P)\right)
$$

where P is the period.

- $a_{k} \rightarrow 0, b_{k} \rightarrow 0$ as $k \rightarrow \infty$
- smoother functions have fewer large a_{k}, b_{k} values
- approximate $f(x)$ by truncating series.

Equivalently, use $a_{k} \sin \left(2 \pi k x / P+\varphi_{k}\right)$.

Quasi-Sinusoidal

Define QS $\left(\theta, \phi, \sigma^{2}\right)$

$$
\begin{aligned}
y_{t} & =\alpha_{t 1} \\
\alpha_{1} & \sim \operatorname{Normal}(0, \boldsymbol{\Sigma}) \\
\alpha_{t+1} & =\phi U_{\theta} \alpha_{t}+\eta_{t} \\
\eta_{t} & \sim \operatorname{Normal}\left(0,\left(1-\phi^{2}\right) \boldsymbol{\Sigma}\right) \\
\boldsymbol{\Sigma} & =\operatorname{diag}\left(\sigma^{2}, \sigma^{2}\right)
\end{aligned}
$$

$U_{\theta}=$ counterclockwise rotation by angle θ

$$
=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

ϕ and η_{t} give us the "quasi."

Quasi-Sinusoidal (2)

Some notes:

- Period of L corresponds to $\theta=2 \pi / L$.
- To be approximately sinusoidal, ϕ^{L} should be close to 1 .
- If $\phi=1$ then $y_{t}=f(t)$, where

$$
\begin{aligned}
a & \sim \text { Rayleigh }(\sigma) \\
\psi & \sim \operatorname{Uniform}(0,2 \pi) \\
f(x) & \triangleq a \cos (x \theta+\psi)
\end{aligned}
$$

Plots: $L=100, \phi^{L}=0.95, \sigma=1$

Plots: $L=100, \phi^{L}=0.99, \sigma=1$

Quasi-Periodic Model - Attempt 3

$$
\begin{aligned}
\operatorname{QP}(L, \phi, c) & =\mathcal{M}_{1}+\cdots+\mathcal{M}_{n} \\
\mathcal{M}_{k} & =\operatorname{QS}\left(2 \pi k / L, \phi, c_{k}^{2} \sigma^{2}\right) \\
\sum_{k=1}^{n} c_{k}^{2} & =1
\end{aligned}
$$

Notes:

- Stationary mean is 0 .
- Stationary variance is σ^{2}.
- Non-integer periods allowed.
- Smaller n / more rapidly decreasing c_{k} mean smoother pattern.

But how do we choose the coefficients c_{k} ?

