Chronikis User Manual*

Kevin S. Van Horn Adobe Inc.

September 6, 2019

Chronikis (kroh-NEE-kees) is a special-purpose language for creating timeseries models. It comes with a compiler chronikisc, and an R package chronikis that contains utilities for compiling Chronikis programs as well as estimating and forecasting with the compiled time-series models.

The name "Chronikis" is derived from the phrase $\chi ponint \sigma eipá$ (chronikí seirá), which means "time series" in Greek.

This initial release is still missing a number of functions and distributions that the language ought to have; the focus was on implementing enough that all of the models in the compiler/Acceptance subdirectory could be compiled.

1 Installation

1. Install needed prerequisites.

- (a) Install R if necessary.
- (b) Install the R package rstan.
- (c) Install The Haskell Tool Stack.
- 2. Clone or download this git repository and cd to the root.
- 3. cd compiler
- 4. stack install

You may run into issues with the Haskell package hmatrix-gsl. This requires the GNU Scientific Library and the pkg-config utility. On Mac OSX with Homebrew you can obtain these by issuing the commands

brew install gsl brew install pkg-config

5. Fire up R and install the package chronikis using these commands: setwd(path_to_cloned_git_repository) install.packages('chronikis_0.2.1.tar.gz', repos=NULL)

^{*©2019,} Adobe Inc. This document is licensed to you under the Apache License, Version 2.0. You may obtain a copy of the license at http://www.apache.org/licenses/LICENSE-2.0.

- 6. Add ~/.local/bin to your bash PATH variable.
- 7. Add ~/.local/bin to your R PATH variable. (This is where chronikisc got installed.) To do this, open your ~/.Renviron file (create it if it doesn't exist) and add the line PATH=\${PATH}:~/.local/bin If there is already a line setting PATH, add ~/.local/bin to the end.

2 Using Chronikis with R

In the following, suppose that

• you have written a Chronikis program that begins with the line

```
def main(q_scale, h_scale: real{0.0, }) =
```

and saved it to "my_model.cks";

- ytrain is the time series on which you will train the model, and for which you will forecast new values; and
- you want to use values of 50 and 10 (resp.) for model parameters q_scale and h_scale.

Here is what the process of compiling and running the model then looks like:

```
library(rstan)
library(chronikis)
sm <- cksCompile("my_model.cks", "createSSMs")</pre>
source("my_model.R") # file was created by cksCompile
# Model training
margs <- mdlArgs(q_scale=50, h_scale=10)</pre>
sma <- setArgs(sm, margs)</pre>
fit <- hmc_estimate(ytrain, sma)</pre>
# fit <- vb_estimate(ytrain, sma)</pre>
# fit <- map_estimate(ytrain, sma)</pre>
post <- posterior_sample(fit)</pre>
npost <- 100
# It gets slow if you use more than 100 posterior draws
models0 <- createSSMs(margs, post, npost)</pre>
filtered0 <- filter_models(ytrain, models0)</pre>
# Model checking
lltrain <- averagedLL(models0, ytrain)</pre>
# Compare yrep[,i], 1 <= i <= npost, to ytrain;</pre>
# are they visually similar?
# Can also compute various summary statistics T()
```

```
# and check that T(ytrain) is within range of values
# T(yrep[,i]).
yrep <- forecast_sample(models0, length(ytrain), 1)</pre>
# Check that smoothed time series looks reasonable.
s <- smoothed_ts(ytrain, filtered0)</pre>
ysmooth <- average_normals(s$means, s$stddevs, 0.1, TRUE)</pre>
# Get one-step predictive residuals.
res <- lapply(filtered0, residuals, type='raw', sd=FALSE)</pre>
# Forecasting
models <- update_models(filtered = filtered0)</pre>
nsteps <- 20
alpha <- 0.10
# 90% predictive intervals
fc <- forecast_intervals(models, nsteps, alpha, TRUE)</pre>
# fc$mean[t] is the predictive mean t steps in the future
# (fc$lower[t], fc$upper[t]) is the 90% predictive interval
# t steps in the future.
ndpm <- 200 # Number of predictive draws per model
ymc <- forecast_sample(models, nsteps, ndpm)</pre>
# ymc is a nsteps x (npost * ndpm) matrix of predictive draws
# that can be used for Monte Carlo analysis
minmc <- matrixStats::colMins(ymc[11:20, ])</pre>
# minmc is a posterior predictive sample of
\# \min(y[n+11], \ldots, y[n+20]), \text{ where } n = \text{length}(y\text{train})
pred <- quantile(minmc, c(0.05, 0.95))
# pred is 90% predictive interval for
# min(y[n+11], ..., y[n+20])
```

Use help(package=chronikis) to see documentation on all of the functions provided in the R package. The directory compiler/Acceptance contains examples of Chronikis programs.

3 Running the Compiler on its Own

The compiler translates a Chronikis program into a Stan program and some R code to facilitate using the results of model estimation. The general syntax for calling the compiler is

chronikisc < cksfname --stan stanfname --R rfname

where

• *cksfname* is the path to the file containing the Chronikis program; we suggest using a .cks extension.

- *stanfname* is the destination path for the Stan output; this should have a .stan extension.
- *rfname* is the distination path for the R output; this should have a .R extension.

If you want to see some examples of the output produced, the directory compiler/Acceptance/Reference contains the results of running chronikisc on the .cks files in compiler/Acceptance.

4 Language Definition

4.1 Overview

A Chronikis program defines a parameterized distribution over time series (infinite sequences of real numeric values.) The general form is

def main (knownParameters) = TSDExpression

where *knownParameters* is a comma-separated list of variables with their types, and *TSDExpression* is an expression that denotes a probability distribution over time series.

Here are some examples for *knownParameters*:

- N: int{1,}, mu: real[N], sigma: real{0.0,} This declares N to be a positive integer, mu to be a real-valued vector of length N, and sigma to be a nonnegative real value.
- rho: real{0.0, 1.0}, sigma_a, sigma_h: real{0.0,}[3] This declares rho to be a real number between 0 and 1, and sigma_h and sigma_a to be length-3 vectors of nonnegative real values.

N, mu, etc. are called *known* parameters because they are already known when the model is created, rather than being inferred from training data. The range constraints (e.g. $\{0.0,\}, \{0.0,1.0\}$) on known parameters are checked when a model is trained.

A *TSDExpression* can have one of three forms:

- variable = defExpr; TSDExpression₁ This defines the variable to have the value defExpr within TSDExpression₁.
- variable ~ distrExpression ; $TSDExpression_1$ This defines the variable as a latent (unobserved) variable having the probability distribution distrExpression, with the time-series distribution $TSDExpression_1$ being conditional on the value of the variable. Typically variable will be a fitted parameter, i.e. a parameter to be inferred from training data, with distrExpr being the prior distribution for variable.
- A function call (including use of the binary operator +) that returns a distribution over time series. Some examples:

- wn(sigma) is a white noise process with mean 0 and variance sigma squared. That is, it corresponds to independent normal distributions for each time step.
- qp(7.0, ell, 6, 0.0, sigma_p) + constp(mu0, sigma0) is a distribution over periodic patterns of period 7, with the distribution having smoothness parameter ell, and scale parameter sigma_p, and the repeating pattern having an unknown mean that is given a normal(mu0,sigma0) prior.

The above is a recursive definition, so in practice a Chronikis program will have one or more variable definitions and/or variable draws, followed by a function call that returns a time-series distribution.

4.2 Examples

(To be written. For now, look in the directory compiler/Acceptance.)

4.3 Types

Chronikis programs are strongly and statically typed, but the only place you provide types are in the parameter list of main. The compiler infers all the remaining types.

A type has four attributes:

- its *element type*, which is **int** or **real**;
- its *shape*, which is a list of nonnegative integers;
- whether or not it is a *time series*, indicated with \$; and
- whether or not it is a *distribution*, indicated with ~.

The attributes apply in the order given above; thus,

- "distribution over time series of real vectors of length n" is a valid type (real[n]\$~), but
- "time series of distributions over real vectors of length n" (real[n]~\$) is not valid, and
- "length-n vector of distributions over univariate time series" (real\$~[n]) is not valid.

Some examples:

- real is the type of real scalars.
- real[n] is the type of vectors of length n.
- real[m,n] is the type of m-by-n matrices.

- real~ is the type of distributions over real values; an example is normal(mu, sigma).
- real[k,p]\$ is the type of k-by-p matrix-valued time series.
- real^{*} is the type of distributions over univariate time series.

Currently, variables and parameters cannot have types that are time series or distributions, but we can construct expressions having such types.

4.4 Data Functions

In the following, a *signature* gives argument types in parentheses, and the corresponding return type after a colon. Italicized variables such as m or n indicate that there is one such signature for every combination of nonnegative values of the variables. Unary functions that take arguments of arbitrarily high dimension apply the scalar function elementwise.

- (+) (binary operator). Signatures:
 - (int, int): int.
 - (real, real): real.
 - (real[n], real[n]): real[n].
 Add two vectors elementwise.
 - (real[m,n],real[m,n]): real[m,n].
 Add two matrices elementwise.
 - (real, real[n]): real[n].
 Add a scalar to each element of a vector.
 - (real[n], real): real[n].
 Add a scalar to each element of a vector.
 - (real, real [m, n]): real [m, n].
 Add a scalar to each element of a matrix.
 - (real[m,n],real): real[m,n].
 Add a scalar to each element of a matrix.
- (-) (unary operator). Negation. Signatures:
 - (int): int.
 - (real): real.
 - (real[n]): real[n].
 Negate each element of a vector.
 - (real[m,n]): real[m,n].
 Negate each element of a matrix.
- (-) (binary operator). Signatures:

- (int, int): int.
- (real, real): real.
- (real[n], real[n]): real[n],
 Subtract one vector from another elementwise.
- (real[m,n],real[m,n]): real[m,n].
 Subtract one matrix from another elementwise.
- (real, real [n]): real [n].
 Subtract each element of a vector from a scalar.
- (real[n], real): real[n].
 Subtract a scalar from each element of a vector.
- (real, real[m,n]): real[m,n].
 Subtract each element of a matrix from a scalar.
- (real[m,n],real): real[m,n].
 Subtract a scalar from each element of a matrix.
- (*) (binary operator). Signatures:
 - (int, int): int.
 - (real, real): real.
 - (real[n], real[n]) : real[n].
 Multiply two vectors elementwise.
 - (real[m,n], real[m,n]) : real[m,n].
 Multiply two matrices elementwise.
 - (real, real [n]): real [n].
 Multiply each element of a vector by a scalar.
 - (real[n], real): real[n].
 Multiply each element of a vector by a scalar.
 - (real, real [m,n]): real [m,n].
 Multiply each element of a matrix by a scalar.
 - (real[m,n],real): real[m,n].
 Multiply each element of a matrix by a scalar.
 - (real, real [m, n, p]): real [m, n, p].
 Multiply each element of a 3D array by a scalar.
 - (real[m,n,p],real): real[m,n,p].
 Multiply each element of a 3D array by a scalar.
- (/) (binary operator). Signatures:
 - (real, real): real.
 - (real[n], real[n]) : real[[n].
 Divide one vector by another elementwise.

- (real[m,n], real[m,n]): real[m,n],
 Divide one matrix by another elementwise.
- (real, real [n]): real [n].
 Divide a scalar by each element of a vector.
- (real[n], real): real[n].
 Divide each element of a vector by a scalar.
- (real, real [m,n]): real [m,n].
 Divide a scalar by each element of a matrix.
- (real[m,n],real): real[m,n].
 Divide each element of a matrix by a scalar.
- (%) (binary operator). Modulus. Signatures:
 - (int, int): int. $a \ b$ is the remainder when dividing a by b. Defined only when $a \ge 0$ and b > 0.
- (^) (binary operator). Exponentiation. Signatures:
 - (real, int) : real.
 - (real, real): real.
- ([]) Array indexing, 1-based. Signatures:
 - (real[n], int): real. a[i] is element i of vector a.
 - (real[m,n], int): real[n].
 a[i] is row i of matrix a (as a vector).
 - (real[m,n],int,int): real. a[i,j] is row i, column j of matrix a.
 - etc. for higher-dimensional arrays.
- - ({}) Array enumeration. Signatures:
 - $(\operatorname{real}[m,n],\ldots,\operatorname{real}[m,n])$: $\operatorname{real}[k,m,n]$. $\{M_1,\ldots,M_k\}$ is the 3D array *a* such that $a[i] = M_i$ for $1 \le i \le k$. It is required that $k \ge 1$.
 - $(\operatorname{real}[m, n, p], \dots, \operatorname{real}[m, n, p])$: $\operatorname{real}[k, m, n, p]$. $\{A_1, \dots, A_k\}$ is the 4D array *a* such that $a[i] = A_i$ for $1 \le i \le k$. It is required that $k \ge 1$.
 - $-\,$ etc. for higher dimensions.
- blocks4. Create a matrix from four submatrices. Signatures:

- $(real[m_1, n_1], real[m_1, n_2], real[m_2, n_1], real[m_2, n_2])$: real[m,n] where $m = m_1 + m_2$ and $n = n_1 + n_2$. blocks4(A, B, C, D) is the matrix

$$\left(\begin{array}{cc}A & B\\C & D\end{array}\right).$$

- (real, real[n], real[m], real[m,n]): real[m+1, n+1]. blocks4(a, b, c, D) = blocks4(A, B, C, D) where
 - * A is the 1×1 matrix created from scalar a,
 - * B is the $1 \times n$ matrix created from vector b, and
 - * C is the $m \times 1$ matrix created from vector c.
- (real[m,n], real[m], real[n], real]: real[m+1, n+1].blocks4(A, b, c, d) = blocks4(A, B, C, D) where
 - * B is the $m\times 1$ matrix created from vector b,
 - * C is the $1 \times n$ matrix created from vector c,
 - * D is the 1×1 matrix created from scalar d.
- cbrt. Cube root. Signatures:
 - (real): real.
 - $(\operatorname{real}[n]): \operatorname{real}[n].$
 - etc. for higher dimensions.
- diag. Create a diagonal or block-diagonal matrix. Signatures:
 - (): real[0,0]. diag() is the 0×0 matrix.
 - $(real, \dots, real)$: real[k,k]. diag (x_1, \dots, x_k) = diag $(vec(x_1, \dots, x_k))$ for $k \ge 1$.
 - (real[n]): real[n,n].
 diag(v) is the diagonal matrix with v as its diagonal.
 - $(\operatorname{real}[m_1, n_1], \ldots, \operatorname{real}[m_k, n_k])$: $\operatorname{real}[m, n]$ where $m = m_1 + \cdots + m_k$ and $n = n_1 + \cdots + n_k$ and $k \ge 1$. $\operatorname{diag}(M_1, \ldots, M_k)$ is the block diagonal matrix having M_1, \ldots, M_k as the blocks.
 - (real[k,m,n]): real[km,kn]. diag(A) = diag(A[1],...,A[k]).
 - (T₁,...,T_k): real[m,n]
 where each T_i is one of real, real[n_i], real[m_i,n_i], or real[p_i,m_i,n_i], and m and n are computed from the shapes of the types T_i.
 diag(a₁,...,a_k) = diag(M₁,...,M_k) where M_i is
 - * diag(a_i) if T_i is real or real[n_i] or real[p_i, m_i, n_i];

* a_i if T_i is real $[m_i, n_i]$.

- diag_sqr. Signatures: same as diag.
 diag_sqr(x₁,...,x_k) = diag(square(x₁),...,square(x_k)).
- div (binary operator). Integer division. Signatures:
 - (int, int): int. It is required that $a \ge 0$ and b > 0 in the expression $a \operatorname{div} b$.
- exp. Natural exponential e^x . Signatures:
 - (real) : real.
 - (real[n]): real[n].
 - etc. for higher dimensions.
- expm1. Natural exponential minus one $e^x 1$. Signatures:
 - (real) : real.
 - (real[n]): real[n].
 - $-\,$ etc. for higher dimensions.
- i2r. Convert an int to a real. Signatures:

- (int): real.

- log. Natural logarithm $\ln x$. Signatures:
 - (real) : real.
 - (real[n]) : real[n].
 - etc. for higher dimensions.
- log1p. Natural logarithm of one plus argument, $\ln(1+x)$. Signatures:
 - (real) : real.
 - (real[n]) : real[n].
 - etc. for higher dimensions.
- mat11. Create a 1×1 matrix. Signatures:

- (real): real[1,1].

- mat22. Create a 2×2 matrix. Signatures:
 - (real, real, real, real): real[2,2]. mat22(a, b, c, d) is the matrix

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right).$$

- negate. Same as unary (-).
- sqrt. Square-root. Signatures:
 - (real): real.
 - (real[n]): real[n].
 - etc. for higher dimensions.
- square. Square each element. Signatures:
 - (real): real.
 - (real[n]): real[n].
 - etc. for higher dimensions.
- to_matrix. Convert a vector to a matrix. Signatures:

- (real[n]): real[n,1].

• transp. Matrix transpose. Signatures:

 $- (\operatorname{real}[m,n]): \operatorname{real}[n,m].$

- vec. Create a vector. Signatures:
 - (real,...,real): real[k]. vec($x_1,...,x_k$) is the vector of length $k \ge 0$ with the indicated elements.
 - $(\operatorname{real}[n_1], \dots, \operatorname{real}[n_k])$: real[n]where $n = n_1 + \dots + n_k$ and $k \ge 1$. $\operatorname{vec}(v_1, \dots, v_k)$ is the result of appending vectors v_1 through v_k .
 - (T_1, \ldots, T_k) : real [n]where each T_i is real or real $[n_i]$, and n is computed from the shapes of the types T_i . vec $(a_1, \ldots, a_k) =$ vec (v_1, \ldots, v_k) where v_i is
 - * the length-one vector $vec(a_i)$ if T_i is real,
 - * a_i if T_i is real[n_i].
- vec0. Create a vector of zeroes. Signatures:

(int): real[n]
where n is the argument.
vec0(n) is the length-n vector vec(0,...,0).

4.5 Data Distributions

- certainly. Degenerate distribution that assigns probability 1 to its argument. An example usage would be
 - x ~ uniform(0.0,1.0);

y ~ uniform(0.0, 2.0);

```
certainly(x+y)
```

which is the distribution of the sum of draws from a U(0,1) and a U(0,2) distribution. Signatures:

- (real): real~.
- (real[n]): real[n]~.
- $(real[m,n]): real[m,n]^{\sim}$.
- etc. for higher dimensions.
- exponential_m. Exponential distribution parameterized by mean. Signatures:
 - (real): real~.

exponential_m(μ) is the exponential distribution with mean μ , which must be positive.

• exponential_mt. Truncated exponential distribution parameterized by mean and upper bound. Signatures:

```
- (real, real): real~.
```

exponential_mt(μ , u) is the truncated exponential distribution with upper bound u and mean μ . It is required that $u > \mu > 0$. Note that exponential_mt(μ , u) is *not* the same as taking exponential_m(μ) and truncating above at u, as the mean of that distribution is less than μ .

• exponential_r. Exponential distribution parameterized by rate. Signatures:

- (real): real[~]. exponential_r(θ) = exponential_m(1/ θ). It is required that $\theta > 0$.

• exponential_rt. Truncated exponential distribution parameterized by rate and upper bound. Signatures:

- (real, real): real~. exponential_rt(θ , u) is the distribution exponential_r(θ) truncated above at u. Note that its mean is not $1/\theta$, due to the truncation. It is required that $\theta > 0$ and u > 0.

• half_cauchy. Cauchy distribution truncated below at 0. Signatures:

- (real): real~.

 $half_cauchy(s)$ is the Cauchy distribution with scale parameter s > 0, truncated below at 0.

- half_normal. 0-mean normal distribution truncated below at 0. Signatures:
 - (real): real~.

half_normal(σ) is the normal distribution with mean 0 and standard deviation $\sigma > 0$, truncated below at 0.

- normal. Univariate normal distribution. Signatures:
 - (real, real): real[~]. normal(μ, σ) is the normal (Gaussian) distribution with mean μ and standard deviation $\sigma > 0$.
- uniform. Uniform distribution. Signatures:
 - (real, real): real~.
 uniform(l, u) is the uniform distribution over the interval from l to u. It is required that l < u.

4.6 Time-series Distributions

In the following we write y_t for the value of a time series at time t. Note that time series start at t = 1, so when we refer to y_0 below, this is a latent "one step before the first" value.

• (+) (binary op). Sum of time-series distributions. Signatures:

- (real\$~, real\$~): real\$~. The distribution $d_1 + d_2$ is equivalent to

$$\begin{aligned} v_1 &\sim d_1 \\ v_2 &\sim d_2 \\ y_t &= v_{1t} + v_{2t} \quad \text{for all } t \geq 1 \end{aligned}$$

• accum. Accumulate. Signatures:

```
- (real$~, real, real): real$~.
The distribution accum(d, \mu, \sigma) is equivalent to
```

```
\begin{split} \delta &\sim d \\ y_0 &\sim \texttt{normal}(\mu, \sigma) \\ y_t &= y_{t-1} + \delta_t \quad \text{for all } t \geq 1 \end{split}
```

Put another way, the time series of differences $y_t - y_{t-1}$ has the distribution d. It is required that $\sigma > 0$.

• ar1. An AR(1) process. Signatures:

- (real, real, real): real\$~.
ar1(
$$\phi, \sigma_q, \sigma_0$$
) is equivalent to

$$y_0 \sim \text{normal}(0, \sigma_0)$$

 $y_t \sim \text{normal}(\phi y_{t-1}, \sigma_q) \text{ for all } t \ge 1$

If $\sigma_0^2 = \sigma_q^2/(1-\phi^2)$ then this distribution is a stationary process with mean 0, standard deviation σ_0 , and correlation ϕ^k between y_t and y_{t+k} . It is required that $0 < \phi < 1$, $\sigma_q > 0$, and $\sigma_0 > 0$.

• const. Constant time series for known constant. Signatures:

- (real) : real^{*}. const(μ) is equivalent to

$$y_t = \mu$$
 for all $t \ge 1$.

• constp. Constant time series for unknown constant. Signatures:

(real, real): real\$~.
 constp(μ, σ) is equivalent to

$$y_0 \sim \operatorname{normal}(\mu, \sigma)$$

 $y_t = y_0 \quad \text{for all } t \ge 1$

It is required that $\sigma > 0$.

- qp. Quasi-periodic process. Signatures:
 - (real, real, int, real, real): real\$~.

 $qp(P, \ell, n, \rho, \sigma)$ is a distribution over quasiperiodic time series. The arguments P, ℓ , and n must currently be numeric literals, e.g. $qp(7.0, 0.8, 6, \rho, \sigma)$. It is required that $P > 0, \ell > 0, 0 \le n < P, 0 \le \rho \le 1$, and $\sigma > 0$.

- * The marginal distribution for y_t is normal $(0, \sigma)$. Additionally, the periodic pattern itself is centered around 0.
- * P is the period; it does not need to be an integer.
- * ℓ gives a smoothness length scale; y_t and y_{t+k} are positively correlated for |k| less than about $\ell P/4$.
- * Nonzero values for ρ allow the periodic pattern to change somewhat from one period to another. Specifically, if P is an integer then y_t and y_{t+P} have a correlation coefficient of ϕ^P , where $\phi = \sqrt{1-\rho^2}$.
- * d is the minimum required degrees of freedom for the periodic pattern. This is an implementation wart that will be removed in a later release of Chronikis; for now you can just set it to the minimum of 10 and P-1.

* This time-series distribution closely approximates a one-dimensional Gaussian process with covariance function

$$\kappa(x) = \sigma^2 \phi^x \exp\left(-2\left(\frac{\sin(\pi x)}{\ell}\right)^2\right).$$

• rw. Random-walk process. Signatures:

- (real, real, real): real\$~. rw($\mu_0, \sigma_0, \sigma_q$) is equivalent to

$$y_0 \sim \operatorname{normal}(\mu_0, \sigma_0)$$

 $y_t \sim \operatorname{normal}(y_{t-1}, \sigma_q) \text{ for all } t \ge 1$

It is required that $\sigma_0 > 0$ and $\sigma_q > 0$.

- ssm. General form for creating a linear state-space model. Signatures:
 - (real[m], real, real[m,m], real[m,m], real[m], real[m,m]): real\$~. ssm(z, h, T, Q, a_0, P_0) specifies the following linear state-space model:

$$\begin{aligned} &\alpha_0 \sim \texttt{mvnormal}(a_0, P_0) \\ &\alpha_t \sim \texttt{mvnormal}(\alpha_{t-1}, Q) \quad \text{for all } t \geq 1 \\ &y_t \sim \texttt{normal}(z'\alpha_t, \sigma) \quad \text{for all } t \geq 1 \\ &\sigma = \sqrt{h} \end{aligned}$$

where mvnormal (μ, Σ) is the multivariate normal distribution with mean vector μ and covariance matrix Σ . It is required that h > 0and T, Q, and P be nonnegative definite matrices.

• wn. White noise. Signatures:

(real): real\$~.
wn(σ) is equivalent to

 $y_t \sim \text{normal}(0, \sigma) \text{ for all } t \geq 1$

It is required that $\sigma > 0$.

4.7 Formal Syntax

In the following,

- "*" means zero or more instances separated by commas,
- "+" means one or more instances separated by commas,
- "?" means optional (zero or one instance),

- "|" separates alternatives, and
- text in typewriter font is literal text.

Here is the grammar:

Program := def main (Parms) = TSDExpr $TSDExpr \coloneqq Expr$ (type must be real\$~) Parms := ParmGroup*ParmGroup := Identifier + : Type $Expr := Def Expr \mid Draw Expr \mid Op Expr$ DefExpr := Variable = OpExpr; Expr $DrawExpr := Variable \sim OpExpr$; Expr (the OpExpr must have a distribution type) *OpExpr* := *Term* | *UnOp OpExpr* | *OpExpr BinOp OpExpr* | *OpExpr Index* UnOp := + | - $BinOp \coloneqq + \mid - \mid * \mid / \mid div \mid ^{$ Index := [IExpr+] $IExpr \coloneqq Expr$ (type must be int) $Term := Variable \mid Literal \mid (Expr) \mid FctApp \mid Array$ $FctApp \coloneqq FctName$ (Expr*) $Array := \{ Expr + \}$ (all entries must have the same type) $Literal := IntegerLit \mid RealLit$ Type := ElemType Bounds? Shape?ElemType := int | real $Bounds := \{ OpExpr? , OpExpr? \}$ Shape := [OpExpr+]

Operator precedence, from lowest to highest, is

- binary +, binary (left associative);
- *, /, div (left associative);
- ^ (right associative);
- unary +, unary -;
- indexing.

The following are tokens, so there is no whitespace within them:

```
IntegerLit \coloneqq Digits
RealLit \coloneqq Digits \ Fraction? Exponent?
(must have at least one of \ Fraction \ or \ Exponent)
Fraction \coloneqq . \ Digits
Exponent \coloneqq ExpChar \ Sign? \ Digits
ExpChar \coloneqq E \mid e
Sign \coloneqq + \mid -
Digits \coloneqq Digit +
Digit \coloneqq 0 \mid \cdots \mid 9
Variable \coloneqq Identifier
FctName \coloneqq Identifier
IdentChar0 \ IdentChar0 \ IdentChar*
IdentChar0 \coloneqq a \mid \cdots \mid z \mid A \mid \cdots \mid Z
IdentChar \coloneqq IdentChar0 \mid Digit \mid \_
```

Note that there is no automatic promotion of integers to reals.