
Chronikis User Manual∗

Kevin S. Van Horn
Adobe Inc.

September 6, 2019

Chronikis (kroh-NEE-kees) is a special-purpose language for creating time-
series models. It comes with a compiler chronikisc, and an R package chronikis
that contains utilities for compiling Chronikis programs as well as estimating
and forecasting with the compiled time-series models.

The name “Chronikis” is derived from the phrase χρονική σvειρά (chronikí
seirá), which means “time series” in Greek.

This initial release is still missing a number of functions and distributions
that the language ought to have; the focus was on implementing enough that all
of the models in the compiler/Acceptance subdirectory could be compiled.

1 Installation
1. Install needed prerequisites.

(a) Install R if necessary.
(b) Install the R package rstan.
(c) Install The Haskell Tool Stack.

2. Clone or download this git repository and cd to the root.

3. cd compiler

4. stack install
You may run into issues with the Haskell package hmatrix-gsl. This
requires the GNU Scientific Library and the pkg-config utility. On Mac
OSX with Homebrew you can obtain these by issuing the commands

brew install gsl
brew install pkg-config

5. Fire up R and install the package chronikis using these commands:
setwd(path_to_cloned_git_repository)
install.packages(’chronikis_0.2.1.tar.gz’, repos=NULL)

∗ c©2019, Adobe Inc. This document is licensed to you under the Apache License, Version
2.0. You may obtain a copy of the license at http://www.apache.org/licenses/LICENSE-2.0.

1

https://www.r-project.org/
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://docs.haskellstack.org/en/stable/install_and_upgrade/
https://brew.sh
http://www.apache.org/licenses/LICENSE-2.0

6. Add ~/.local/bin to your bash PATH variable.

7. Add ~/.local/bin to your R PATH variable. (This is where chronikisc
got installed.) To do this, open your ~/.Renviron file (create it if it
doesn’t exist) and add the line
PATH=${PATH}:~/.local/bin
If there is already a line setting PATH, add ~/.local/bin to the end.

2 Using Chronikis with R
In the following, suppose that

• you have written a Chronikis program that begins with the line

def main(q_scale, h_scale: real{0.0, }) =

and saved it to “my_model.cks”;

• ytrain is the time series on which you will train the model, and for which
you will forecast new values; and

• you want to use values of 50 and 10 (resp.) for model parameters q_scale
and h_scale.

Here is what the process of compiling and running the model then looks like:

library(rstan)
library(chronikis)
sm <- cksCompile("my_model.cks", "createSSMs")
source("my_model.R") # file was created by cksCompile

Model training
margs <- mdlArgs(q_scale=50, h_scale=10)
sma <- setArgs(sm, margs)
fit <- hmc_estimate(ytrain, sma)
fit <- vb_estimate(ytrain, sma)
fit <- map_estimate(ytrain, sma)
post <- posterior_sample(fit)
npost <- 100
It gets slow if you use more than 100 posterior draws
models0 <- createSSMs(margs, post, npost)
filtered0 <- filter_models(ytrain, models0)

Model checking
lltrain <- averagedLL(models0, ytrain)
Compare yrep[,i], 1 <= i <= npost, to ytrain;
are they visually similar?
Can also compute various summary statistics T()

2

and check that T(ytrain) is within range of values
T(yrep[,i]).
yrep <- forecast_sample(models0, length(ytrain), 1)
Check that smoothed time series looks reasonable.
s <- smoothed_ts(ytrain, filtered0)
ysmooth <- average_normals(s$means, s$stddevs, 0.1, TRUE)
Get one-step predictive residuals.
res <- lapply(filtered0, residuals, type=’raw’, sd=FALSE)

Forecasting
models <- update_models(filtered = filtered0)
nsteps <- 20
alpha <- 0.10
90% predictive intervals
fc <- forecast_intervals(models, nsteps, alpha, TRUE)
fc$mean[t] is the predictive mean t steps in the future
(fc$lower[t], fc$upper[t]) is the 90% predictive interval
t steps in the future.
ndpm <- 200 # Number of predictive draws per model
ymc <- forecast_sample(models, nsteps, ndpm)
ymc is a nsteps x (npost * ndpm) matrix of predictive draws
that can be used for Monte Carlo analysis
minmc <- matrixStats::colMins(ymc[11:20,])
minmc is a posterior predictive sample of
min(y[n+11], ..., y[n+20]), where n = length(ytrain)
pred <- quantile(minmc, c(0.05, 0.95))
pred is 90% predictive interval for
min(y[n+11], ..., y[n+20])

Use help(package=chronikis) to see documentation on all of the functions
provided in the R package. The directory compiler/Acceptance contains ex-
amples of Chronikis programs.

3 Running the Compiler on its Own
The compiler translates a Chronikis program into a Stan program and some R
code to facilitate using the results of model estimation. The general syntax for
calling the compiler is

chronikisc < cksfname --stan stanfname --R rfname

where

• cksfname is the path to the file containing the Chronikis program; we
suggest using a .cks extension.

3

https://mc-stan.org

• stanfname is the destination path for the Stan output; this should have
a .stan extension.

• rfname is the distination path for the R output; this should have a .R
extension.

If you want to see some examples of the output produced, the directory compiler/Acceptance/Reference
contains the results of running chronikisc on the .cks files in compiler/Acceptance.

4 Language Definition

4.1 Overview
A Chronikis program defines a parameterized distribution over time series (in-
finite sequences of real numeric values.) The general form is

def main (knownParameters) =TSDExpression

where knownParameters is a comma-separated list of variables with their types,
and TSDExpression is an expression that denotes a probability distribution over
time series.

Here are some examples for knownParameters:

• N: int{1,}, mu: real[N], sigma: real{0.0,}
This declares N to be a positive integer, mu to be a real-valued vector of
length N, and sigma to be a nonnegative real value.

• rho: real{0.0, 1.0}, sigma_a, sigma_h: real{0.0,}[3]
This declares rho to be a real number between 0 and 1, and sigma_h and
sigma_a to be length-3 vectors of nonnegative real values.

N, mu, etc. are called known parameters because they are already known when
the model is created, rather than being inferred from training data. The range
constraints (e.g. {0.0,}, {0.0,1.0}) on known parameters are checked when
a model is trained.

A TSDExpression can have one of three forms:

• variable = defExpr ;TSDExpression1

This defines the variable to have the value defExpr within TSDExpression1.

• variable ~ distrExpression ;TSDExpression1

This defines the variable as a latent (unobserved) variable having the
probability distribution distrExpression, with the time-series distribution
TSDExprresion1 being conditional on the value of the variable. Typically
variable will be a fitted parameter, i.e. a parameter to be inferred from
training data, with distrExpr being the prior distribution for variable.

• A function call (including use of the binary operator +) that returns a
distribution over time series. Some examples:

4

– wn(sigma) is a white noise process with mean 0 and variance sigma
squared. That is, it corresponds to independent normal distributions
for each time step.

– qp(7.0, ell, 6, 0.0, sigma_p) + constp(mu0, sigma0) is a dis-
tribution over periodic patterns of period 7, with the distribution
having smoothness parameter ell, and scale parameter sigma_p,
and the repeating pattern having an unknown mean that is given
a normal(mu0,sigma0) prior.

The above is a recursive definition, so in practice a Chronikis program will have
one or more variable definitions and/or variable draws, followed by a function
call that returns a time-series distribution.

4.2 Examples
(To be written. For now, look in the directory compiler/Acceptance.)

4.3 Types
Chronikis programs are strongly and statically typed, but the only place you
provide types are in the parameter list of main. The compiler infers all the
remaining types.

A type has four attributes:

• its element type, which is int or real;

• its shape, which is a list of nonnegative integers;

• whether or not it is a time series, indicated with $; and

• whether or not it is a distribution, indicated with ~.

The attributes apply in the order given above; thus,

• “distribution over time series of real vectors of length n” is a valid type
(real[n]$~), but

• “time series of distributions over real vectors of length n” (real[n]~$) is
not valid, and

• “length-n vector of distributions over univariate time series” (real$~[n])
is not valid.

Some examples:

• real is the type of real scalars.

• real[n] is the type of vectors of length n.

• real[m,n] is the type of m-by-n matrices.

5

• real~ is the type of distributions over real values; an example is normal(mu,
sigma).

• real[k,p]$ is the type of k-by-p matrix-valued time series.

• real$~ is the type of distributions over univariate time series.

Currently, variables and parameters cannot have types that are time series or
distributions, but we can construct expressions having such types.

4.4 Data Functions
In the following, a signature gives argument types in parentheses, and the corre-
sponding return type after a colon. Italicized variables such as m or n indicate
that there is one such signature for every combination of nonnegative values of
the variables. Unary functions that take arguments of arbitrarily high dimension
apply the scalar function elementwise.

• (+) (binary operator). Signatures:

– (int, int) : int.

– (real, real) : real.

– (real[n], real[n]) : real[n].
Add two vectors elementwise.

– (real[m,n], real[m,n]) : real[m,n].
Add two matrices elementwise.

– (real, real[n]) : real[n].
Add a scalar to each element of a vector.

– (real[n], real) : real[n].
Add a scalar to each element of a vector.

– (real, real[m,n]) : real[m,n].
Add a scalar to each element of a matrix.

– (real[m,n], real) : real[m,n].
Add a scalar to each element of a matrix.

• (-) (unary operator). Negation. Signatures:

– (int) : int.

– (real) : real.

– (real[n]) : real[n].
Negate each element of a vector.

– (real[m,n]) : real[m,n].
Negate each element of a matrix.

• (-) (binary operator). Signatures:

6

– (int, int) : int.

– (real, real) : real.

– (real[n], real[n]) : real[n],
Subtract one vector from another elementwise.

– (real[m,n], real[m,n]) : real[m,n].
Subtract one matrix from another elementwise.

– (real, real[n]) : real[n].
Subtract each element of a vector from a scalar.

– (real[n], real) : real[n].
Subtract a scalar from each element of a vector.

– (real, real[m,n]) : real[m,n].
Subtract each element of a matrix from a scalar.

– (real[m,n], real) : real[m,n].
Subtract a scalar from each element of a matrix.

• (*) (binary operator). Signatures:

– (int, int) : int.

– (real, real) : real.

– (real[n], real[n]) : real[n].
Multiply two vectors elementwise.

– (real[m,n], real[m,n]) : real[m,n].
Multiply two matrices elementwise.

– (real, real[n]) : real[n].
Multiply each element of a vector by a scalar.

– (real[n], real) : real[n].
Multiply each element of a vector by a scalar.

– (real, real[m,n]) : real[m,n].
Multiply each element of a matrix by a scalar.

– (real[m,n], real) : real[m,n].
Multiply each element of a matrix by a scalar.

– (real, real[m,n,p]) : real[m,n,p].
Multiply each element of a 3D array by a scalar.

– (real[m,n,p], real) : real[m,n,p].
Multiply each element of a 3D array by a scalar.

• (/) (binary operator). Signatures:

– (real, real) : real.

– (real[n], real[n]) : real[[n].
Divide one vector by another elementwise.

7

– (real[m,n], real[m,n]) : real[m,n],
Divide one matrix by another elementwise.

– (real, real[n]) : real[n].
Divide a scalar by each element of a vector.

– (real[n], real) : real[n].
Divide each element of a vector by a scalar.

– (real, real[m,n]) : real[m,n].
Divide a scalar by each element of a matrix.

– (real[m,n], real) : real[m,n].
Divide each element of a matrix by a scalar.

• (%) (binary operator). Modulus. Signatures:

– (int, int) : int.
a % b is the remainder when dividing a by b. Defined only when a ≥ 0
and b > 0.

• (^) (binary operator). Exponentiation. Signatures:

– (real, int) : real.

– (real, real) : real.

• ([]) Array indexing, 1-based. Signatures:

– (real[n], int) : real.
a[i] is element i of vector a.

– (real[m,n], int) : real[n].
a[i] is row i of matrix a (as a vector).

– (real[m,n], int, int) : real.
a[i, j] is row i, column j of matrix a.

– etc. for higher-dimensional arrays.

• - ({}) Array enumeration. Signatures:

– (real[m,n], . . . , real[m,n]) : real[k,m,n].
{M1, . . . ,Mk} is the 3D array a such that a[i] = Mi for 1 ≤ i ≤ k.
It is required that k ≥ 1.

– (real[m,n,p], . . . , real[m,n,p]) : real[k,m,n,p].
{A1, . . . , Ak} is the 4D array a such that a[i] = Ai for 1 ≤ i ≤ k. It
is required that k ≥ 1.

– etc. for higher dimensions.

• blocks4. Create a matrix from four submatrices. Signatures:

8

– (real[m1,n1], real[m1,n2], real[m2,n1], real[m2,n2]) : real[m,n]
where m = m1 +m2 and n = n1 + n2.
blocks4(A,B,C,D) is the matrix(

A B
C D

)
.

– (real, real[n], real[m], real[m,n]) : real[m+ 1,n+ 1].
blocks4(a, b, c,D) = blocks4(A,B,C,D) where

∗ A is the 1× 1 matrix created from scalar a,
∗ B is the 1× n matrix created from vector b, and
∗ C is the m× 1 matrix created from vector c.

– (real[m,n], real[m], real[n], real) : real[m+ 1,n+ 1].
blocks4(A, b, c, d) = blocks4(A,B,C,D) where

∗ B is the m× 1 matrix created from vector b,
∗ C is the 1× n matrix created from vector c,
∗ D is the 1× 1 matrix created from scalar d.

• cbrt. Cube root. Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• diag. Create a diagonal or block-diagonal matrix. Signatures:

– () : real[0,0].
diag() is the 0× 0 matrix.

– (real, . . . , real) : real[k,k].
diag(x1, . . . , xk) = diag(vec(x1, . . . , xk)) for k ≥ 1.

– (real[n]) : real[n,n].
diag(v) is the diagonal matrix with v as its diagonal.

– (real[m1,n1], . . . , real[mk,nk]) : real[m,n]
where m = m1 + · · ·+mk and n = n1 + · · ·+ nk and k ≥ 1.
diag(M1, . . . ,Mk) is the block diagonal matrix having M1, . . . ,Mk

as the blocks.

– (real[k,m,n]) : real[km,kn].
diag(A) = diag(A[1], . . . , A[k]).

– (T1, . . . , Tk) : real[m,n]
where each Ti is one of real, real[ni], real[mi,ni], or real[pi,mi,ni],
and m and n are computed from the shapes of the types Ti.
diag(a1, . . . , ak) = diag(M1, . . . ,Mk) where Mi is

∗ diag(ai) if Ti is real or real[ni] or real[pi,mi,ni];

9

∗ ai if Ti is real[mi,ni].

• diag_sqr. Signatures: same as diag.
diag_sqr(x1, . . . , xk) = diag(square(x1), . . . , square(xk)).

• div (binary operator). Integer division. Signatures:

– (int, int) : int.
It is required that a ≥ 0 and b > 0 in the expression a div b.

• exp. Natural exponential ex. Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• expm1. Natural exponential minus one ex − 1. Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• i2r. Convert an int to a real. Signatures:

– (int) : real.

• log. Natural logarithm lnx. Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• log1p. Natural logarithm of one plus argument, ln (1 + x). Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• mat11. Create a 1× 1 matrix. Signatures:

– (real) : real[1,1].

• mat22. Create a 2× 2 matrix. Signatures:

– (real, real, real, real) : real[2,2].
mat22(a, b, c, d) is the matrix(

a b
c d

)
.

10

• negate. Same as unary (-).

• sqrt. Square-root. Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• square. Square each element. Signatures:

– (real) : real.

– (real[n]) : real[n].

– etc. for higher dimensions.

• to_matrix. Convert a vector to a matrix. Signatures:

– (real[n]) : real[n,1].

• transp. Matrix transpose. Signatures:

– (real[m,n]) : real[n,m].

• vec. Create a vector. Signatures:

– (real, . . . , real) : real[k].
vec(x1, . . . , xk) is the vector of length k ≥ 0 with the indicated
elements.

– (real[n1], . . . , real[nk]) : real[n]
where n = n1 + · · ·+ nk and k ≥ 1.
vec(v1, . . . , vk) is the result of appending vectors v1 through vk.

– (T1, . . . , Tk) : real[n]
where each Ti is real or real[ni], and n is computed from the
shapes of the types Ti.
vec(a1, . . . , ak) = vec(v1, . . . , vk) where vi is

∗ the length-one vector vec(ai) if Ti is real,
∗ ai if Ti is real[ni].

• vec0. Create a vector of zeroes. Signatures:

– (int) : real[n]
where n is the argument.
vec0(n) is the length-n vector vec(0, . . . , 0).

11

4.5 Data Distributions
• certainly. Degenerate distribution that assigns probability 1 to its ar-

gument. An example usage would be
x ~ uniform(0.0,1.0);
y ~ uniform(0.0, 2.0);
certainly(x+y)
which is the distribution of the sum of draws from a U(0, 1) and a U(0, 2)
distribution. Signatures:

– (real) : real~.

– (real[n]) : real[n]~.

– (real[m,n]) : real[m,n]~.

– etc. for higher dimensions.

• exponential_m. Exponential distribution parameterized by mean. Sig-
natures:

– (real) : real~.
exponential_m(µ) is the exponential distribution with mean µ, which
must be positive.

• exponential_mt. Truncated exponential distribution parameterized by
mean and upper bound. Signatures:

– (real, real) : real~.
exponential_mt(µ, u) is the truncated exponential distribution with
upper bound u and mean µ. It is required that u > µ > 0. Note that
exponential_mt(µ, u) is not the same as taking exponential_m(µ)
and truncating above at u, as the mean of that distribution is less
than µ.

• exponential_r. Exponential distribution parameterized by rate. Signa-
tures:

– (real) : real~.
exponential_r(θ) = exponential_m(1/θ). It is required that θ >
0.

• exponential_rt. Truncated exponential distribution parameterized by
rate and upper bound. Signatures:

– (real, real) : real~.
exponential_rt(θ, u) is the distribution exponential_r(θ) trun-
cated above at u. Note that its mean is not 1/θ, due to the trunca-
tion. It is required that θ > 0 and u > 0.

• half_cauchy. Cauchy distribution truncated below at 0. Signatures:

12

– (real) : real~.
half_cauchy(s) is the Cauchy distribution with scale parameter s >
0, truncated below at 0.

• half_normal. 0-mean normal distribution truncated below at 0. Signa-
tures:

– (real) : real~.
half_normal(σ) is the normal distribution with mean 0 and stan-
dard deviation σ > 0, truncated below at 0.

• normal. Univariate normal distribution. Signatures:

– (real, real) : real~.
normal(µ, σ) is the normal (Gaussian) distribution with mean µ and
standard deviation σ > 0.

• uniform. Uniform distribution. Signatures:

– (real, real) : real~.
uniform(l, u) is the uniform distribution over the interval from l to
u. It is required that l < u.

4.6 Time-series Distributions
In the following we write yt for the value of a time series at time t. Note that
time series start at t = 1, so when we refer to y0 below, this is a latent "one
step before the first" value.

• (+) (binary op). Sum of time-series distributions. Signatures:

– (real$~, real$~) : real$~.
The distribution d1 + d2 is equivalent to

υ1 ∼ d1
υ2 ∼ d2
yt = υ1t + υ2t for all t ≥ 1

• accum. Accumulate. Signatures:

– (real$~, real, real) : real$~.
The distribution accum(d, µ, σ) is eqivalent to

δ ∼ d
y0 ∼ normal(µ, σ)

yt = yt−1 + δt for all t ≥ 1

Put another way, the time series of differences yt − yt−1 has the
distribution d. It is required that σ > 0.

13

• ar1. An AR(1) process. Signatures:

– (real, real, real) : real$~.
ar1(φ, σq, σ0) is equivalent to

y0 ∼ normal(0, σ0)

yt ∼ normal(φyt−1, σq) for all t ≥ 1

If σ2
0 = σ2

q/
(
1− φ2

)
then this distribution is a stationary process

with mean 0, standard deviation σ0, and correlation φk between yt
and yt+k. It is required that 0 < φ < 1, σq > 0, and σ0 > 0.

• const. Constant time series for known constant. Signatures:

– (real) : real$~.
const(µ) is equivalent to

yt = µ for all t ≥ 1.

• constp. Constant time series for unknown constant. Signatures:

– (real, real) : real$~.
constp(µ, σ) is equivalent to

y0 ∼ normal(µ, σ)

yt = y0 for all t ≥ 1

It is required that σ > 0.

• qp. Quasi-periodic process. Signatures:

– (real, real, int, real, real) : real$~.
qp(P, `, n, ρ, σ) is a distribution over quasiperiodic time series. The
arguments P , `, and nmust currently be numeric literals, e.g. qp(7.0, 0.8, 6, ρ, σ).
It is required that P > 0, ` > 0, 0 ≤ n < P , 0 ≤ ρ ≤ 1, and σ > 0.
∗ The marginal distribution for yt is normal(0, σ). Additionally,

the periodic pattern itself is centered around 0.
∗ P is the period; it does not need to be an integer.
∗ ` gives a smoothness length scale; yt and yt+k are positively

correlated for |k| less than about `P/4.
∗ Nonzero values for ρ allow the periodic pattern to change some-

what from one period to another. Specifically, if P is an inte-
ger then yt and yt+P have a correlation coefficient of φP , where
φ =

√
1− ρ2.

∗ d is the minimum required degrees of freedom for the periodic
pattern. This is an implementation wart that will be removed
in a later release of Chronikis; for now you can just set it to the
minimum of 10 and P − 1.

14

∗ This time-series distribution closely approximates a one-dimensional
Gaussian process with covariance function

κ(x) = σ2φx exp

(
−2

(
sin (πx)

`

)2
)
.

• rw. Random-walk process. Signatures:

– (real, real, real) : real$~.
rw(µ0, σ0, σq) is equivalent to

y0 ∼ normal(µ0, σ0)

yt ∼ normal(yt−1, σq) for all t ≥ 1

It is required that σ0 > 0 and σq > 0.

• ssm. General form for creating a linear state-space model. Signatures:

– (real[m], real, real[m,m], real[m,m], real[m], real[m,m]) : real$~.
ssm(z, h, T,Q, a0, P0) specifies the following linear state-space model:

α0 ∼ mvnormal(a0, P0)

αt ∼ mvnormal(αt−1, Q) for all t ≥ 1

yt ∼ normal(z′αt, σ) for all t ≥ 1

σ =
√
h

where mvnormal(µ,Σ) is the multivariate normal distribution with
mean vector µ and covariance matrix Σ. It is required that h > 0
and T , Q, and P be nonnegative definite matrices.

• wn. White noise. Signatures:

– (real) : real$~.
wn(σ) is equivalent to

yt ∼ normal(0, σ) for all t ≥ 1

It is required that σ > 0.

4.7 Formal Syntax
In the following,

• “∗” means zero or more instances separated by commas,

• “+” means one or more instances separated by commas,

• “?” means optional (zero or one instance),

15

• “|” separates alternatives, and

• text in typewriter font is literal text.

Here is the grammar:

Program := def main (Parms) =TSDExpr

TSDExpr := Expr

(type must be real$~)
Parms := ParmGroup∗

ParmGroup := Identifier+ :Type

Expr := DefExpr | DrawExpr | OpExpr

DefExpr := Variable =OpExpr ;Expr

DrawExpr := Variable ~OpExpr ;Expr

(the OpExpr must have a distribution type)
OpExpr := Term | UnOp OpExpr | OpExpr BinOp OpExpr | OpExpr Index

UnOp := + | -
BinOp := + | - | * | / | div | ˆ
Index := [IExpr+]

IExpr := Expr

(type must be int)
Term := Variable | Literal | (Expr) | FctApp | Array

FctApp := FctName (Expr∗)
Array := {Expr+ }

(all entries must have the same type)
Literal := IntegerLit | RealLit

Type := ElemType Bounds? Shape?

ElemType := int | real
Bounds := {OpExpr? ,OpExpr? }

Shape := [OpExpr+]

Operator precedence, from lowest to highest, is

• binary +, binary - (left associative);

• * , / , div (left associative);

• ^ (right associative);

• unary + , unary -;

• indexing.

16

The following are tokens, so there is no whitespace within them:

IntegerLit := Digits

RealLit := Digits Fraction?Exponent?

(must have at least one of Fraction or Exponent)
Fraction := .Digits

Exponent := ExpChar Sign? Digits

ExpChar := E | e
Sign := + | -

Digits := Digit+

Digit := 0 | · · · | 9
Variable := Identifier

FctName := Identifier

Identifier := IdentChar0 IdentChar∗
IdentChar0 := a | · · · | z | A | · · · | Z

IdentChar := IdentChar0 | Digit | _

Note that there is no automatic promotion of integers to reals.

17

	Installation
	Using Chronikis with R
	Running the Compiler on its Own
	Language Definition
	Overview
	Examples
	Types
	Data Functions
	Data Distributions
	Time-series Distributions
	Formal Syntax

